World Library  
Flag as Inappropriate
Email this Article

Kuratowski's theorem

Article Id: WHEBN0000054493
Reproduction Date:

Title: Kuratowski's theorem  
Author: World Heritage Encyclopedia
Language: English
Subject: Three utilities problem, Wagner's theorem, Kazimierz Kuratowski, Graph Theory
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Kuratowski's theorem

A subdivision of K3,3 in the generalized Petersen graph G(9,2), showing that the graph is nonplanar

In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five vertices) or of K3,3 (complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).

Statement of the theorem

A planar graph is a graph whose vertices can be represented by points in the Euclidean plane, and whose edges can be represented by simple curves in the same plane connecting the points representing their endpoints, such that no two curves intersect except at a common endpoint. Planar graphs are often drawn with straight line segments representing their edges, but by Fáry's theorem this makes no difference to their graph-theoretic characterization.

A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G is planar, if it is not possible to subdivide the edges of K5 or K3,3, and then possibly add additional edges and vertices, to form a graph isomorphic to G. Equivalently, a finite graph is planar if and only if it does not contain a subgraph that is homeomorphic to K5 or K3,3.

Kuratowski subgraphs

If G is a graph that contains a subgraph H that is a subdivision of K5 or K3,3, then H is known as a Kuratowski subgraph of G.[1] With this notation, Kuratowski's theorem can be expressed succinctly: a graph is planar if and only if it does not have a Kuratowski subgraph.

The two graphs K5 and K3,3 are nonplanar, as may be shown either by a case analysis or an argument involving Euler's formula. Additionally, subdividing a graph cannot turn a nonplanar graph into a planar graph: if a subdivision of a graph G has a planar drawing, the paths of the subdivision form curves that may be used to represent the edges of G itself. Therefore, a graph that contains a Kuratowski subgraph cannot be planar. The more difficult direction in proving Kuratowski's theorem is to show that, if a graph is nonplanar, it must contain a Kuratowski subgraph.

Algorithmic implications

A Kuratowski subgraph of a nonplanar graph can be found in linear time, as measured by the size of the input graph.[2] This allows the correctness of a planarity testing algorithm to be verified for nonplanar inputs, as it is straightforward to test whether a given subgraph is or is not a Kuratowski subgraph.[3] Usually, non-planar graphs contain a large number of Kuratowski-subgraphs. The extraction of these subgraphs is needed, e.g., in Branch and cut algorithms for crossing minimization. It is possible to extract a large number of Kuratowski subgraphs in time dependent on their total size.[4]

History

Kazimierz Kuratowski published his theorem in 1930.[5] Since then, multiple proofs of the theorem have been discovered.[6]

In the Soviet Union, Kuratowski's theorem was known as the Pontryagin–Kuratowski theorem, as its proof was allegedly first given in Lev Pontryagin's unpublished notes. However, this usage has not spread to other places.[7]

Related results

A closely related result, Wagner's theorem, characterizes the planar graphs by their minors in terms of the same two forbidden graphs K5 and K3,3. Every Kuratowski subgraph is a special case of a minor of the same type, and while the reverse is not true, it is not difficult to find a Kuratowski subgraph (of one type or the other) from one of these two forbidden minors; therefore, these two theorems are equivalent.[8]

References

  1. ^  .
  2. ^ Williamson, S. G. (September 1984), "Depth-first search and Kuratowski subgraphs",  .
  3. ^  .
  4. ^ Chimani, Markus;  .
  5. ^  .
  6. ^  .
  7. ^  .
  8. ^  .
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.