World Library  
Flag as Inappropriate
Email this Article

Limit of a sequence

Article Id: WHEBN0000285773
Reproduction Date:

Title: Limit of a sequence  
Author: World Heritage Encyclopedia
Language: English
Subject: Shapley–Folkman lemma, E (mathematical constant), Sequence, Convergence of random variables, Closed-form expression
Collection: Limits (Mathematics), Sequences and Series
Publisher: World Heritage Encyclopedia

Limit of a sequence

diagram of a hexagon and pentagon circumscribed outside a circle
The sequence given by the perimeters of regular n-sided polygons that circumscribe the unit circle has a limit equal to the perimeter of the circle, i.e. 2\pi r. The corresponding sequence for inscribed polygons has the same limit.

n n sin(1/n)
1 0.841471
2 0.958851
10 0.998334
100 0.999983

As the positive integer n becomes larger and larger, the value n sin(1/n) becomes arbitrarily close to 1. We say that "the limit of the sequence n sin(1/n) equals 1."

In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to".[1] If such a limit exists, the sequence is called convergent. A sequence which does not converge is said to be divergent.[2] The limit of a sequence is said to be the fundamental notion on which the whole of analysis ultimately rests.[1]

Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.


  • History 1
  • Real numbers 2
    • Examples 2.1
    • Formal definition 2.2
    • Properties 2.3
    • Infinite limits 2.4
  • Metric spaces 3
    • Definition 3.1
    • Properties 3.2
  • Topological spaces 4
    • Definition 4.1
    • Properties 4.2
  • Cauchy sequences 5
  • Definition in hyperreal numbers 6
  • See also 7
  • Notes 8
    • Proofs 8.1
  • References 9
  • External links 10


The Greek philosopher Zeno of Elea is famous for formulating paradoxes that involve limiting processes.

Leucippus, Democritus, Antiphon, Eudoxus and Archimedes developed the method of exhaustion, which uses an infinite sequence of approximations to determine an area or a volume. Archimedes succeeded in summing what is now called a geometric series.

Newton dealt with series in his works on Analysis with infinite series (written in 1669, circulated in manuscript, published in 1711), Method of fluxions and infinite series (written in 1671, published in English translation in 1736, Latin original published much later) and Tractatus de Quadratura Curvarum (written in 1693, published in 1704 as an Appendix to his Optiks). In the latter work, Newton considers the binomial expansion of (x+o)n which he then linearizes by taking limits (letting o→0).

In the 18th century, mathematicians such as Euler succeeded in summing some divergent series by stopping at the right moment; they did not much care whether a limit existed, as long as it could be calculated. At the end of the century, Lagrange in his Théorie des fonctions analytiques (1797) opined that the lack of rigour precluded further development in calculus. Gauss in his etude of hypergeometric series (1813) for the first time rigorously investigated under which conditions a series converged to a limit.

The modern definition of a limit (for any ε there exists an index N so that ...) was given by Bernhard Bolzano (Der binomische Lehrsatz, Prague 1816, little noticed at the time) and by Karl Weierstrass in the 1870s.

Real numbers

The plot of a convergent sequence {an} is shown in blue. Visually we can see that the sequence is converging to the limit 0 as n increases.

In the real numbers, a number L is the limit of the sequence (x_n) if the numbers in the sequence become closer and closer to L and not to any other number.


  • If x_n = c for some constant c, then x_n \to c.[proof 1]
  • If x_n = 1/n, then x_n \to 0.[proof 2]
  • If x_n = 1/n when n is even, and x_n = 1/n^2 when n is odd, then x_n \to 0. (The fact that x_{n+1} > x_n whenever n is odd is irrelevant.)
  • Given any real number, one may easily construct a sequence that converges to that number by taking decimal approximations. For example, the sequence 0.3, 0.33, 0.333, 0.3333, ... converges to 1/3. Note that the decimal representation 0.3333... is the limit of the previous sequence, defined by
0.3333...\triangleq\lim_{n\to \infty} \sum_{i=1}^n \frac{3}{10^i}.

Formal definition

We call x the limit of the sequence (x_n) if the following condition holds:

  • For each real number \epsilon > 0, there exists a natural number N such that, for every natural number n > N, we have |x_n - x| < \epsilon.

In other words, for every measure of closeness \epsilon, the sequence's terms are eventually that close to the limit. The sequence (x_n) is said to converge to or tend to the limit x, written x_n \to x or \lim_{n \to \infty} x_n = x.

If a sequence converges to some limit, then it is convergent; otherwise it is divergent.


Limits of sequences behave well with respect to the usual arithmetic operations. If a_n \to a and b_n \to b, then a_n+b_n \to a+b, a_nb_n \to ab and, if neither b nor any b_n is zero, a_n/b_n \to a/b.

For any continuous function f, if x_n \to x then f(x_n) \to f(x). In fact, any real-valued function f is continuous if and only if it preserves the limits of sequences (though this is not necessarily true when using more general notions of continuity).

Some other important properties of limits of real sequences include the following.

  • The limit of a sequence is unique.
  • \lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n
  • \lim_{n\to\infty} c a_n = c \lim_{n\to\infty} a_n
  • \lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n)( \lim_{n\to\infty} b_n)
  • \lim_{n\to\infty} \frac{a_n} {b_n} = \frac{ \lim_{n\to\infty} a_n}{ \lim_{n\to\infty} b_n} provided \lim_{n\to\infty} b_n \ne 0
  • \lim_{n\to\infty} a_n^p = \left[ \lim_{n\to\infty} a_n \right]^p
  • If a_n \leq b_n for all n greater than some N, then \lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n
  • (Squeeze Theorem) If a_n \leq c_n \leq b_n for all n > N, and \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L,   then \lim_{n\to\infty} c_n = L.
  • If a sequence is bounded and monotonic then it is convergent.
  • A sequence is convergent if and only if every subsequence is convergent.

These properties are extensively used to prove limits without the need to directly use the cumbersome formal definition. Once proven that 1/n \to 0 it becomes easy to show that \frac{a}{b+c/n} \to \frac{a}{b}, (b \ne 0), using the properties above.

Infinite limits

A sequence (x_n) is said to tend to infinity, written x_n \to \infty or \lim_{n\to\infty}x_n = \infty if, for every K, there is an N such that, for every n \geq N, x_n > K; that is, the sequence terms are eventually larger than any fixed K. Similarly, x_n \to -\infty if, for every K, there is an N such that, for every n \geq N, x_n < K. If a sequence tends to infinity, or to minus infinity, then it is divergent (however, a divergent sequence need not tend to plus or minus infinity).

Metric spaces


A point x of the metric space (X, d) is the limit of the sequence (xn) if, for all ε > 0, there is an N such that, for every n \geq N, d(x_n, x) < \epsilon. This coincides with the definition given for real numbers when X = \mathbb{R} and d(x, y) = |x-y|.


For any continuous function f, if x_n \to x then f(x_n) \to f(x). In fact, a function f is continuous if and only if it preserves the limits of sequences.

Limits of sequences are unique when they exist, as distinct points are separated by some positive distance, so for \epsilon less than half this distance, sequence terms cannot be within a distance \epsilon of both points.

Topological spaces


A point x of the topological space (X, τ) is the limit of the sequence (xn) if, for every neighbourhood U of x, there is an N such that, for every n \geq N, x_n \in U. This coincides with the definition given for metric spaces if (X,d) is a metric space and \tau is the topology generated by d.

The limit of a sequence of points \left(x_n:n\in \mathbb{N}\right)\; in a topological space T is a special case of the limit of a function: the domain is \mathbb{N} in the space \mathbb{N} \cup \lbrace +\infty \rbrace with the induced topology of the affinely extended real number system, the range is T, and the function argument n tends to +∞, which in this space is a limit point of \mathbb{N}.


If X is a Hausdorff space then limits of sequences are unique where they exist. Note that this need not be the case in general; in particular, if two points x and y are topologically indistinguishable, any sequence that converges to x must converge to y and vice versa.

Cauchy sequences

The plot of a Cauchy sequence (xn), shown in blue, as xn versus n. Visually, we see that the sequence appears to be converging to a limit point as the terms in the sequence become closer together as n increases. In the real numbers every Cauchy sequence converges to some limit.

A Cauchy sequence is a sequence whose terms become arbitrarily close together as n gets very large. The notion of a Cauchy sequence is important in the study of sequences in metric spaces, and, in particular, in real analysis. One particularly important result in real analysis is Cauchy characterization of convergence for sequences:

A sequence is convergent if and only if it is Cauchy.

Definition in hyperreal numbers

The definition of the limit using the hyperreal numbers formalizes the intuition that for a "very large" value of the index, the corresponding term is "very close" to the limit. More precisely, a real sequence (x_n) tends to L if for every infinite hypernatural H, the term xH is infinitely close to L, i.e., the difference xH - L is infinitesimal. Equivalently, L is the standard part of xH

L = {\rm st}(x_H)\,.

Thus, the limit can be defined by the formula

\lim_{n \to \infty} x_n= {\rm st}(x_H),

where the limit exists if and only if the righthand side is independent of the choice of an infinite H.

See also


  1. ^ a b Courant (1961), p. 29.
  2. ^ Courant (1961), p. 39.


  1. ^ Proof: choose N = 1. For every n > N, |x_n - c| = 0 < \epsilon
  2. ^ Proof: choose N = \left\lfloor\frac{1}{\epsilon}\right\rfloor (the floor function). For every n > N, |x_n - 0| \le x_{N+1} = \frac{1}{\lfloor1/\epsilon\rfloor + 1} < \epsilon.


External links

  • Hazewinkel, Michiel, ed. (2001), "Limit",  
  • , including limitsA history of the calculus
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.