World Library  
Flag as Inappropriate
Email this Article

Locus (mathematics)

Article Id: WHEBN0000542465
Reproduction Date:

Title: Locus (mathematics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Surface, Analytic geometry, Quadric, Algebraic geometry, Connectedness locus
Collection: Elementary Geometry
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Locus (mathematics)

Each curve in this example is a locus defined as the conchoid of a circle centered at point P and the line l. In this example, P is 7cm from l.

In geometry, a locus (plural: loci) is a set of points whose location satisfies or is determined by one or more specified conditions.[1][2]

Contents

  • Commonly studied loci 1
  • Proof of a locus 2
  • Examples 3
    • First example 3.1
    • Second example 3.2
    • Third example 3.3
    • Fourth example 3.4
  • See also 4
  • References 5

Commonly studied loci

Examples from plane geometry:

  • The set of points equidistant from two points is a perpendicular bisector to the line segment connecting the two points.[3]
  • The set of points equidistant from two lines which cross is the angle bisector.
  • All conic sections are loci:[4]
    • Parabola: the set of points equidistant from a single point (the focus) and a line (the directrix).
    • Circle: the set of points for which the distance from a single point is constant (the radius). The set of points for each of which the ratio of the distances to two given foci is a positive constant (that is not 1) is referred to as a Circle of Apollonius.
    • Hyperbola: the set of points for each of which the absolute value of the difference between the distances to two given foci is a constant.
    • Ellipse: the set of points for each of which the sum of the distances to two given foci is a constant. In particular, the circle is a locus.

Proof of a locus

In order to prove that a geometric shape is the correct locus for a given set of conditions, one generally divides the proof into two stages:[5]

  • Proof that all the points that satisfy the conditions are on the given shape.
  • Proof that all the points on the given shape satisfy the conditions.

Examples

(distance PA) = 3.(distance PB)

First example

We find the locus of the points P that have a given ratio of distances k = d1/d2 to two given points.
In this example we choose k= 3, A(-1,0) and B(0,2) as the fixed points.

P(x,y) is a point of the locus
\Leftrightarrow |PA| = 3 |PB|
\Leftrightarrow |PA|^2 = 9 |PB|^2
\Leftrightarrow (x+1)^2+(y-0)^2=9(x-0)^2+9(y-2)^2
\Leftrightarrow 8(x^2+y^2)-2x-36y+35 =0
\Leftrightarrow \left(x-\frac18\right)^2+\left(y-\frac94\right)^2=\frac{45}{64}

This equation represents a circle with center (1/8,9/4) and radius \frac{3}{8}\sqrt{5}. It is the circle of Apollonius defined by these values of k, A, and B.

Second example

Locus of point C

A triangle ABC has a fixed side [AB] with length c. We determine the locus of the third vertex C such that the medians from A and C are orthogonal.

We choose an orthonormal coordinate system such that A(-c/2,0), B(c/2,0). C(x,y) is the variable third vertex. The center of [BC] is M( (2x+c)/4, y/2 ). The median from C has a slope y/x. The median AM has slope 2y/(2x+3c).

The locus is a circle
C(x,y) is a point of the locus
\Leftrightarrow The medians from A and C are orthogonal
\Leftrightarrow \frac{y}{x} \cdot \frac{2y}{2x+3c} = -1
\Leftrightarrow 2 y^2 + 2x^2 + 3c x = 0
\Leftrightarrow x^2 + y^2 + (3c/2) x = 0
\Leftrightarrow (x + 3c/4)^2 + y^2 = 9c^2/16

The locus of the vertex C is a circle with center (-3c/4,0) and radius 3c/4.

Third example

The intersection point of the associated lines k and l describes the circle

A locus can also be defined by two associated curves depending on one common parameter. If the parameter varies, the intersection points of the associated curves describe the locus.

In the figure, the points K and L are fixed points on a given line m. The line k is a variable line through K. The line l through L is perpendicular to k. The angle \alpha between k and m is the parameter. k and l are associated lines depending on the common parameter. The variable intersection point S of k and l describes a circle. This circle is the locus of the intersection point of the two associated lines.

Fourth example

A locus of points need not be one-dimensional (as a circle, line, etc.). For example,[1] the locus of the inequality 2x+3y–6<0 is the portion of the plane that is below the line 2x+3y–6=0.

See also

References

  1. ^ a b James, Robert Clarke; James, Glenn (1992), Mathematics Dictionary, Springer, p. 255,  
  2. ^  
  3. ^ George E. Martin, The Foundations of Geometry and the Non-Euclidean Plane, Springer-Verlag, 1975
  4. ^ Hamilton, Henry Parr (834), An Analytical System of Conic Sections: Designed for the Use of Students, Springer 
  5. ^ G.P. WestThe new geometry: form 1
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.