Primitive abundant number

In mathematics a primitive abundant number is an abundant number whose proper divisors are all deficient numbers.[1][2]

For example, 20 is a primitive abundant number because:

  1. The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number.
  2. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number.

The first few primitive abundant numbers are:


The smallest odd primitive abundant number is 945.

A variant definition is abundant numbers having no abundant proper divisor (sequence perfect numbers including all prime multiples of 6. It starts:

12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114


Every multiple of a primitive abundant number is an abundant number.

Every abundant number is a multiple of a primitive abundant number or a multiple of a perfect number.

Every primitive abundant number is either a primitive semiperfect number or a weird number.

There are an infinite number of primitive abundant numbers.

The number of primitive abundant numbers less than or equal to n is O \left( \frac{n}{\log^2(n)} \right)\, .[3]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.