World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0007626796
Reproduction Date:

Title: Pseudoelasticity  
Author: World Heritage Encyclopedia
Language: English
Subject: Nickel titanium, Plasticity (physics), Elasticity (physics), Materials science
Collection: Materials Science
Publisher: World Heritage Encyclopedia


Pseudoelasticity, sometimes called superelasticity, is an elastic (reversible) response to an applied stress, caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in shape-memory alloys. Pseudoelasticity is from the reversible motion of domain boundaries during the phase transformation, rather than just bond stretching or the introduction of defects in the crystal lattice (thus it is not true superelasticity but rather pseudoelasticity). Even if the domain boundaries do become pinned, they may be reversed through heating. Thus, a pseudoelastic material may return to its previous shape (hence, shape memory) after the removal of even relatively high applied strains. One special case of pseudoelasticity is called the Bain Correspondence. This involves the austenite/martensite phase transformation between a face-centered crystal lattice (FCC) and a body-centered tetragonal crystal structure (BCT).[1]

Superelastic alloys belong to the larger family of shape-memory alloys. When mechanically loaded, a superelastic alloy deforms reversibly to very high strains - up to 10% - by the creation of a stress-induced phase. When the load is removed, the new phase becomes unstable and the material regains its original shape. Unlike shape-memory alloys, no change in temperature is needed for the alloy to recover its initial shape.

Superelastic devices take advantage of their large, reversible deformation and include antennas, eyeglass frames, and biomedical stents.

Nickel Titanium (Nitinol) is an example of an alloy exhibiting superelasticity.

See also


  1. ^  
  • Liang C.; Rogers C. A. "One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials" Journal of Intelligent Material Systems and Structures, Vol. 1, No. 2, 207-234, 1990 (322 citations at 2007-1-21 according to Google Scholar, [1])
  • Miyazaki, S; Otsuka, K; Suzuki, Y. "Transformation Pseudoelasticity and Deformation Behavior in a Ti-50.6at%Ni Alloy" Scripta Metallurgica Vol. 15, no. 3, 287-292, 1981
  • Huo Y., Müller I. "Nonequilibrium thermodynamics of pseudoelasticity" - Continuum Mechanics and Thermodynamics, 163-204, Volume 5, Number 3, 1993
  • Tanaka K.; Kobayashi S. ; Sato Y. "Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys" International journal of plasticity, 1986, vol. 2, no1, 59-72
  • Kamita T.; Matsuzaki Y. "One-dimensional pseudoelastic theory of shape memory alloys". Smart Mater. Struct. 7 (1998) 489–495. [2]
  • Y. Yamada. "Theory of pseudoelasticity and the shape-memory effect". Phys. Rev. B Vol 46, No. 10. (1992) [3]

External links

  • DoITPoMS Teaching and Learning Package: "Superelasticity and Shape Memory Alloys"
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.