World Library  
Flag as Inappropriate
Email this Article

Rembrandt (crater)

Article Id: WHEBN0022912082
Reproduction Date:

Title: Rembrandt (crater)  
Author: World Heritage Encyclopedia
Language: English
Subject: Impact crater, Rembrandt (disambiguation), Raditladi Basin
Publisher: World Heritage Encyclopedia

Rembrandt (crater)

Planet Mercury

33°12′S 271°48′W / 33.2°S 271.8°W / -33.2; -271.8Coordinates: 33°12′S 271°48′W / 33.2°S 271.8°W / -33.2; -271.8

Diameter 715 km (444 mi)
Eponym Rembrandt Harmenszoon van Rijn

Rembrandt is a large impact crater on Mercury.[1] With a diameter of 715 km it is the second-largest impact basin on the planet, after Caloris,[2] and is one of the larger craters in the Solar System. It was discovered by MESSENGER during its second flyby of Mercury on October 6, 2008.[1] The crater is 3.9 billion years old, and was created during the period of Late Heavy Bombardment.[1] The density and size distribution of impact craters along Rembrandt's rim indicate that it is one of the youngest impact basins on Mercury.[3]

The crater is named after Dutch painter Rembrandt Harmenszoon van Rijn.


Rembrandt was discovered in the images taken by the MESSENGER spacecraft during its second flyby of Mercury on October 6, 2008.[1] The crater is situated in the southern hemisphere of the planet at the latitude of about −33°.[4] It is named after famous Dutch painter Rembrandt Harmenszoon van Rijn (1606–1669). The name Rembrandt was approved by the International Astronomical Union on February 27, 2009.[4]


Rembrandt is the second largest impact basin (crater) on Mercury after Caloris.[2] Its outer boundary, which is called crater rim, is defined by a ring of inward facing scarps and massifs. The diameter of this ring is 715 km (444 mi)— half the diameter of Caloris. The basin is surrounded by the blocky impact deposits made from the material excavated from the depth. The ejecta are mainly observed to the north and northeast from the basin. The interior of Rembrandt includes two terrain types: hummocky terrain and smooth plains. The former occupies a part of the basin's floor near its northern margin forming an incomplete ring about 130 km (81 mi) wide. The latter fill much of the interior of Rembrandt. These two plain types are separated from each other by a ring of massifs, which is about 450 km in diameter. This boundary may correspond to the outer edge of the transient cavity created by the impact, which later collapsed.[2]

The smooth plains filling the inner part of Rembrandt are interpreted to be of the volcanic origin. They are probably similar to the Lunar maria, although they are lighter than the surrounding plains, which is the opposite of what is observed on the Moon. The smooth plains are intersected by a system of wrinkle-ridges and troughs, both having radial or concentric shapes. The concentric ridges form a nearly complete ring with the diameter of about 375 km. The radial wrinkle ridges and troughs occur mainly inside this ring. Both radial and concentric ridges have the width between 1 and 10 km (0.62 and 6.21 mi) and can be as long as 180 km (110 mi). The troughs are generally younger than the ridges, because they cut the latter. The width of the troughs varies from 1 and 3 km (0.62 and 1.86 mi). Some radial troughs closely follow wrinkle ridges forming a unique wheel spoke pattern. Troughs are interpreted to be extensional features—grabens, while wrinkle ridges are contractional.[2]

Rembrandt basin is cross-cut by a large lobate scarp running from the southwest to the north. It is about 600 km (370 mi) long and belongs to the global system of scarps, which covers the entire surface of Mercury.[2] These features are thought to have resulted from the global contraction of the planet as its interior cooled. The scarp is the youngest tectonic feature observed in this region, because it cuts all other units including smooth plains.[2]

Both the rim and interior of Rembrandt are covered by numerous impact craters. The central smooth plains embay and partially flood many of these craters suggesting that the plains resulted from the prolonged effusive volcanic activity. Those impact craters, which formed after the end of volcanism, indicate that in the center of Rembrandt lava, layers can be as thick as 2 km (1.2 mi).[2]

Age and formation

The data available on the crater indicate that Rembrandt is one of the youngest impact features on Mercury. Its age is roughly the same as that of Caloris. The basin probably formed near the end of the Late Heavy Bombardment of the inner Solar System about 3.9 billion year ago.[3] The impact had excavated material from the lower part of the crust leading to the formation of the dark and relatively blue impact ejecta, which surrounds Rembrandt. The thinning of the crust, which resulted from the impact, stimulated effusive volcanic activity. Light-colored lavas filled the inner part of Rembrandt causing it to subside, which led to the contraction of the basin's floor and formation of wrinkle ridges. The later floor uplift, which causes are not known, led to the extension and formation of troughs.[2]

The latest episode of tectonic activity led to the formation of the lobate scarp, which actually runs tangentially to the ring of wrinkle ridges. This indicates that the ring, which may correspond to a buried interior basin ring, influenced the scarp formation. After that, the internal activity probably ended, and the surface was shaped only by relatively infrequent impacts.[2]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.