World Library  
Flag as Inappropriate
Email this Article

Rhodococcus

Article Id: WHEBN0008157140
Reproduction Date:

Title: Rhodococcus  
Author: World Heritage Encyclopedia
Language: English
Subject: Shuttle vector, Mycolic acid, Petroleum
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Rhodococcus

Rhodococcus
Rhodococcus sp.
Scientific classification
Kingdom: Bacteria
Phylum: Actinobacteria
Order: Actinomycetales
Suborder: Corynebacterineae
Family: Nocardiaceae
Genus: Rhodococcus
Zopf 1891

Rhodococcus is a genus of aerobic, nonsporulating, nonmotile Gram-positive bacteria closely related to Mycobacterium and Corynebacterium.[1][2] While a few species are pathogenic, most are benign, and have been found to thrive in a broad range of environments, including soil, water, and eukaryotic cells. Fully sequenced in October 2006, the genome is known to be 9.7 megabasepairs long and 67% G/C.[3]

Strains of Rhodococcus are important owing to their ability to catabolize a wide range of compounds and produce bioactive steroids, acrylamide, and acrylic acid, and their involvement in fossil fuel biodesulfurization.[3] This genetic and catabolic diversity is not only due to the large bacterial chromosome, but also to the presence of three large linear plasmids.[1] Rhodococcus is also an experimentally advantageous system owing to a relatively fast growth rate and simple developmental cycle, but is not well characterized.[3]

Another important application of Rhodococcus comes from bioconversion, using biological systems to convert cheap starting material into more valuable compounds, such as its ability to metabolize harmful environmental pollutants, including toluene, naphthalene, herbicides, and PCBs. Rhodococcus species typically metabolize aromatic substrates by first oxygenating the aromatic ring to form a diol (two alcohol groups). Then, the ring is cleaved with intra/extradiol mechanisms, opening the ring and exposing the substrate to further metabolism. Since the chemistry is very stereospecific, the diols are created with predictable chirality. While controlling the chirality of chemical reaction presents a significant challenge for synthetic chemists, biological processes can be used instead to faithfully produce chiral molecules in cases where direct chemical synthesis is not feasible or efficient. An example of this is the use of Rhodococcus to produce indene, a precursor to the AIDS drug indinavir, a protease inhibitor, and containing two of the five chiral centers needed in the complex.[4]

Indinavir, indene shown in green[4]

Biodegradation of organic pollutants

The burgeoning amount of bacterial genomic data provides unparalleled opportunities for understanding the genetic and molecular bases of the [5] Rhodococcus sp. strain Q1 (American Type Culture Collection strain number 49987), isolated from soil and paper mill sludge, is able to degrade quinoline, various pyridine derivatives, catechol, benzoate, and protocatechuic acid.[6]

Pathogenic Rhodococcus

The genus Rhodococcus has two pathogenic species: R. fascians and R. equi. The former, a plant pathogen, causes leafy gall disease in both angiosperm and gymnosperm plants.[7] R. equi is the causative agent of foal pneumonia (rattles) and mainly infects foals up to three months in age. However, it has a wide host range, sporadically infecting pigs, cattle, and immunocompromised humans, in particular AIDS patients and those undergoing immunosuppressive therapy.[8] Interestingly, both pathogens rely on a conjugative virulence plasmid to cause disease. In case of R. fascians, this is a linear plasmid, whereas R. equi harbors a circular plasmid. Both pathogens are economically significant. R. fascians is a major pathogen of tobacco plants. R. equi, one of the most important foal pathogens, is endemic on many stud farms around the world.

In molecular biology

Rhodococcus has also been identified as a contaminant of DNA extraction kit reagents and ultrapure water systems, which may lead to its erroneous appearance in microbiota or metagenomic datasets.[9]

Species

References

  1. ^ a b van der Geize R., and L. Dijkhuizen (2004). "Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications". Microbiology 7 (3): 255–261.  
  2. ^ Burkovski A (editor). (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press.  
  3. ^ a b c McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD; Warren; Hsiao; Araki; Myhre; Fernandes; Miyazawa; Wong; Lillquist; Wang; Dosanjh; Hara; Petrescu; Morin; Yang; Stott; Schein; Shin; Smailus; Siddiqui; Marra; Jones; Holt; Brinkman; Miyauchi; Fukuda; Davies; Mohn; Eltis (October 17, 2006). "The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse". PNAS 103 (42): 15582–15587.  
  4. ^ a b Treadway, S.L., K.S. Yanagimachi, E. Lankenau, P.A. Lessard, G. Stephanopoulos and A.J. Sinskey (1999). "Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24". Appl. Microbiol. Biotechnol 51 (6): 786–793.  
  5. ^ McLeod MP and Eltis LD (2008). "Genomic Insights Into the Aerobic Pathways for Degradation of Organic Pollutants". Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press.  
  6. ^ O'Loughlin, E.J., S.R. Kehrmeyer, and G.K. Sims. 1996. Isolation, characterization, and substrate utilization of a quinoline degrading bacterium. International Biodeterioration and Biodegradation. 38(2):107-118. doi:10.1016/S0964-8305(96)00032-7
  7. ^ Goethals, K.; Vereecke, D.; Jaziri, M.; Van, Montagu M.; Holsters, M. (2001). "Leafy gall formation by Rhodococcus fascians". Annu.Rev.Phytopathol 39: 27–52.  
  8. ^ Muscatello, G.; Leadon, D. P.; Klay, M.; Ocampo-Sosa, A.; Lewis, D. A.; Fogarty, U.; Buckley, T.; Gilkerson, J. R.; Meijer, W. G. et al. et al. (2007). "Rhodococcus equi infection in foals: the science of 'rattles'". Equine Vet.J. 39 (5): 470–478.  
  9. ^ Salter, S; Cox, M; Turek, E; Calus, S; Cookson, W; Moffatt, M; Turner, P; Parkhill, J; Loman, N; Walker, A (2014). "Reagent contamination can critically impact sequence-based microbiome analyses". BioRxiv.  
  10. ^ Klatte, S. et al. (1994). "Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians". Int. J. Syst. Bacteriol 44 (4): 627–630.  
  11. ^ http://www.physorg.com/news/2011-06-wood-digesting-enzyme-bacteria-boost-biofuel.html
  12. ^ Takeuchi, M; Hatano, K; Sedlácek, I; Pácová, Z (2002). "Rhodococcus jostii sp. nov., isolated from a medieval grave". International journal of systematic and evolutionary microbiology 52 (Pt 2): 409–13.  

External links

  • For species and synonyms see here: National Center for Biotechnology Information (NCBI)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.