#jsDisabledContent { display:none; } My Account |  Register |  Help

# Separable space

Article Id: WHEBN0000027855
Reproduction Date:

 Title: Separable space Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Separable space

In mathematics a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \{ x_n \}_{n=1}^{\infty} of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset.

Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces.

## First examples

Any topological space which is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An important example of an uncountable separable space is the real line, in which the rational numbers form a countable dense subset. Similarly the set of all vectors (r_1,\ldots,r_n) \in \mathbb{R}^n in which r_i is rational for all i is a countable dense subset of \mathbb{R}^n; so for every n the n-dimensional Euclidean space is separable.

A simple example of a space which is not separable is a discrete space of uncountable cardinality.

Further examples are given below.

## Separability versus second countability

Any second-countable space is separable: if \scriptstyle \{U_n\} is a countable base, choosing any \scriptstyle x_n \in U_n from the non-empty \scriptstyle U_n gives a countable dense subset. Conversely, a metrizable space is separable if and only if it is second countable, which is the case if and only if it is Lindelöf.

To further compare these two properties:

• An arbitrary subspace of a second countable space is second countable; subspaces of separable spaces need not be separable (see below).
• Any continuous image of a separable space is separable (Willard 1970, Th. 16.4a).; even a quotient of a second countable space need not be second countable.
• A product of at most continuum many separable spaces is separable. A countable product of second countable spaces is second countable, but an uncountable product of second countable spaces need not even be first countable.

## Cardinality

The property of separability does not in and of itself give any limitations on the cardinality of a topological space: any set endowed with the trivial topology is separable, as well as second countable, quasi-compact, and connected. The "trouble" with the trivial topology is its poor separation properties: its Kolmogorov quotient is the one-point space.

A first countable, separable Hausdorff space (in particular, a separable metric space) has at most the continuum cardinality c. In such a space, closure is determined by limits of sequences and any convergent sequence has at most one limit, so there is a surjective map from the set of convergent sequences with values in the countable dense subset to the points of X.

A separable Hausdorff space has cardinality at most 2^c, where c is the cardinality of the continuum. For this closure is characterized in terms of limits of filter bases: if Y is a subset of X and z is a point of X, then z is in the closure of Y if and only if there exists a filter base B consisting of subsets of Y which converges to z. The cardinality of the set S(Y) of such filter bases is at most 2^{2^{|Y|}}. Moreover, in a Hausdorff space, there is at most one limit to every filter base. Therefore, there is a surjection S(Y) \rightarrow X when \bar Y=X.

The same arguments establish a more general result: suppose that a Hausdorff topological space X contains a dense subset of cardinality \kappa. Then X has cardinality at most 2^{2^{\kappa}} and cardinality at most 2^{\kappa} if it is first countable.

The product of at most continuum many separable spaces is a separable space (Willard 1970, p. 109, Th 16.4c). In particular the space \mathbb{R}^{\mathbb{R}} of all functions from the real line to itself, endowed with the product topology, is a separable Hausdorff space of cardinality 2^c. More generally, if κ is any infinite cardinal, then a product of at most 2κ spaces with dense subsets of size at most κ has itself a dense subset of size at most κ (Hewitt–Marczewski–Pondiczery theorem).

## Constructive mathematics

Separability is especially important in numerical analysis and constructive mathematics, since many theorems that can be proved for nonseparable spaces have constructive proofs only for separable spaces. Such constructive proofs can be turned into algorithms for use in numerical analysis, and they are the only sorts of proofs acceptable in constructive analysis. A famous example of a theorem of this sort is the Hahn–Banach theorem.

## Properties

• A Moore plane), but every open subspace of a separable space is separable, (Willard 1970, Th 16.4b). Also every subspace of a separable metric space is separable.
• In fact, every topological space is a subspace of a separable space of the same cardinality. A construction adding at most countably many points is given in (Sierpinski 1952, p. 49); if the space was a Hausdorff space then the space constructed which it embeds into is also a Hausdorff space.
• The set of all real-valued continuous functions on a separable space has a cardinality less than or equal to c. This follows since such functions are determined by their values on dense subsets.
• From the above property, one can deduce the following: If X is a separable space having an uncountable closed discrete subspace, then X cannot be Sorgenfrey plane is not normal.
• For a compact Hausdorff space X, the following are equivalent:
(i) X is second countable.
(ii) The space \mathcal{C}(X,\mathbb{R}) of continuous real-valued functions on X with the supremum norm is separable.
(iii) X is metrizable.

### Embedding separable metric spaces

For nonseparable spaces:

• A metric space of density equal to an infinite cardinal α is isometric to a subspace of C([0,1]α, R), the space of real continuous functions on the product of α copies of the unit interval. (Kleiber 1969)

## References

• Heinonen, Juha (January 2003), Geometric embeddings of metric spaces, retrieved 6 February 2009
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.