#jsDisabledContent { display:none; } My Account |  Register |  Help

# Statistical interference

Article Id: WHEBN0010988372
Reproduction Date:

 Title: Statistical interference Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Statistical interference

When two probability distributions overlap, statistical interference exists. Knowledge of the distributions can be used to determine the likelihood that one parameter exceeds another, and by how much.

This technique can be used for dimensioning of mechanical parts, determining when an applied load exceeds the strength of a structure, and in many other situations. This type of analysis can also be used to estimate the probability of failure or the frequency of failure.

## Contents

• Dimensional interference 1
• Physical property interference 2
• References 4

## Dimensional interference

Interference of measurement distributions to determine fit of parts

Mechanical parts are usually designed to fit precisely together. For example, if a shaft is designed to have a "sliding fit" in a hole, the shaft must be a little smaller than the hole. (Traditional tolerances may suggest that all dimensions fall within those intended tolerances. A process capability study of actual production, however, may reveal normal distributions with long tails.) Both the shaft and hole sizes will usually form normal distributions with some average (arithmetic mean) and standard deviation.

With two such normal distributions, a distribution of interference can be calculated. The derived distribution will also be normal, and its average will be equal to the difference between the means of the two base distributions. The variance of the derived distribution will be the sum of the variances of the two base distributions.

This derived distribution can be used to determine how often the difference in dimensions will be less than zero (i.e., the shaft cannot fit in the hole), how often the difference will be less than the required sliding gap (the shaft fits, but too tightly), and how often the difference will be greater than the maximum acceptable gap (the shaft fits, but not tightly enough).

## Physical property interference

Interference of distributions of applied load and strength

Physical properties and the conditions of use are also inherently variable. For example, the applied load (stress) on a mechanical part may vary. The measured strength of that part (tensile strength, etc.) may also be variable. The part will break when the stress exceeds the strength.

With two normal distributions, the statistical interference may be calculated as above. (This problem is also workable for transformed units such as the log-normal distribution). With other distributions, or combinations of different distributions, a Monte Carlo method or simulation is often the most practical way to quantify the effects of statistical interference.

## References

• Paul H. Garthwaite, Byron Jones, Ian T. Jolliffe (2002) Statistical Inference. ISBN 0-19-857226-3
• Haugen, (1980) Probabilistic mechanical design, Wiley. ISBN 0-471-05847-5
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.