World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000189016
Reproduction Date:

Title: Surfboard  
Author: World Heritage Encyclopedia
Language: English
Subject: Surfing, Surfboard fin, Leg rope, Kitesurfing, Human-powered watercraft
Collection: Surfing Equipment
Publisher: World Heritage Encyclopedia


A stack of boards in Waikiki during a surf competition.

A surfboard is an elongated platform used in the sport of surfing. Surfboards are relatively light, but are strong enough to support an individual standing on them while riding a breaking wave. They were invented in ancient Hawaii, where they were known as papa he'e nalu in the Hawaiian language; they were usually made of wood from local trees, such as koa, and were often over 15 feet (5 m) in length and extremely heavy.[1][2] Major advances over the years include the addition of one or more fins on the bottom rear of the board to improve directional stability, and numerous improvements in materials and shape.

Modern surfboards are made of polyurethane or polystyrene foam covered with layers of fiberglass cloth, and polyester or epoxy resin. The result is a light and strong surfboard that is buoyant and maneuverable. Recent developments in surfboard technology have included the use of carbon fiber. Each year, approximately 400,000 surfboards are manufactured.[3]


  • Parts 1
    • Bottom 1.1
      • Concave 1.1.1
      • Convex 1.1.2
    • Deck 1.2
    • Fins 1.3
      • Thrusters and Tri-fins 1.3.1
      • Quad 1.3.2
      • Nubster 1.3.3
    • Leash 1.4
      • Leash cup 1.4.1
    • Nose 1.5
    • Tail 1.6
    • Rails 1.7
    • Rocker 1.8
    • Stringer 1.9
  • Construction 2
    • Polyurethane (P.U.) boards 2.1
    • Balsa boards 2.2
    • Hollow wooden boards 2.3
  • Board types and variations 3
    • Shortboard 3.1
      • Hybrid 3.1.1
      • Fish 3.1.2
      • Funboard 3.1.3
      • Gun 3.1.4
    • Longboard 3.2
      • Classic longboards 3.2.1
      • Modern longboards 3.2.2
      • The 2+1 3.2.3
      • Mini Tanker 3.2.4
      • The Malibu 3.2.5
      • Olo 3.2.6
      • Alaia 3.2.7
      • Tandem 3.2.8
  • See also 4
  • References 5
  • External links 6


Diagram of a surfboard including the nose, the tail, the deck, the rails, the stringer, the bottom, the nose rocker, the tail rocker, and the leg rope


A chart showing various shapes of the bottoms of surf boards.

The surface of the board that rests on the water, usually concaved but sometimes convex.


Modern surfboards often contain multiple contours on the bottom of the board, termed concaves. These concaves have different uses and vary among different types of surfboards. Most concaves on the modern shortboard begin about twelve inches (300 mm) back from the nose of the board on the bottom and then carry out through the middle to the tail of the surfboard. The purpose of concave is to direct water through the fins of the surfboard. Surfboard shapers sometimes experiment with concaves to create different drive and response characteristics on each individual surfboard.


Some older and more traditional surfboards along with many modern boards that take inspiration from these older boards utilize a convex rather than concave design on the bottom of the surfboard. These boards displace more water and sit lower in the wave than a surfboard with a concave bottom.[4]


The deck is the surface of the board that the surfer stands on. Surfwax is applied to this surface. Wax comes in different degrees of hardness allowing its application in differing water temperatures.


A man standing on a board as the wave passes under him.

The surfboard fin is a stabilizing rudder fixed to the rear of the surfboard to prevent it from sliding sideways. In the early days, surfers would stabilize the board by hanging the toes of their back foot over the edge of the board and would steer by putting their foot in the water. The American surfer Tom Blake was the first to experiment with adding a fin to a surfboard, fastening the keel from an old speedboat to a surfboard in 1935.[5] About one or two years later, Woody "Spider" Brown independently developed a similar design, but Brown himself gave Blake precedence: "(I made my first surfboard keel) about '36 or '37, somewhere in there; about the same time. But, I didn't know anything about (Blake) and his experiments with adding fins to surfboards. See, we were all separated out. I was in San Diego and he was in L.A., way up there.".[6] This innovation revolutionized surfing, allowing surfers to direct the board's momentum and providing more balance when turning.

The template of the modern

  • A registry of surfboards, categorized by their designs

External links

  1. ^ "Ethnology database".  
  2. ^ "History of the surfboard". Retrieved 2008-11-04. 
  3. ^ "Toxicity of Surfing". Envirosurfer. 
  4. ^ John Dang. "Displacement Hulls". Retrieved 2010-02-13. 
  5. ^ Lynch, Gary (2001) Tom Blake : The Uncommon Journey Of A Pioneer Waterman. Croul Family Foundation, Corona del Mar, Cal.
  6. ^ Gault-Williams, Malcolm (2003) “Woody 'Spider' Brown” Legendary Surfers: A Definitive History of Surfing's Culture and Heroes, Volume 1, Chapter 24 (Originally: “Woody Brown: Pilot, Surfer, Sailor,” The Surfer's Journal, V:3, Fall 1996.)
  7. ^ The Australian Surfer's Journal Volume 2 No 2 Autumn 1999 pages 82-84
  8. ^ Surfing Magazine May 1979 Volume 15 Number 5, page 9
  9. ^ a b Koteen, Casey (10 August 2010). "Simon Anderson Talks Thruster". Retrieved 28 February 2011. 
  10. ^ LONGBOARD Magazine Vol 4 No 5. 1996 November/December
  11. ^ "Wavegrinder Surfboard Fins - Science Applied to the Art of Surfing and Surfboard Fins". Retrieved 2008-11-04. 
  12. ^ Cheyne Horan. "STARFIN (also known as the winged keel)". Retrieved 2008-11-08. 
  13. ^
  14. ^
  15. ^
  16. ^ a b c Surfboard Anatomy Guide
  17. ^ "Korduroy Television - Nubster". 
  18. ^ a b c Marcus, Ben (October 2000). "Surf Leashes". Surfline/Wavetrak, Inc. Retrieved 2007-01-11. 
  19. ^ Recently, the largest producer of these blanks, Clark Foam announced its closure. This move drastically affected surfboard production and has become known to surfers as Blank Monday or Black Monday.
  20. ^ Ben Perreira. "Apocalypse to epoxy, from Clark Foam to the New Standards of Surfboard Production". Retrieved 2008-11-04. 
  21. ^ John Wythe White. "Surf Wars".  
  22. ^ John Dang. "Surfboard Design". Retrieved 2010-03-10. 
  23. ^ Trevor Cralle (2001). The Surfin'ary: A Dictionary of Surfing Terms and Surfspeak. Ten Speed Press.  
  24. ^ Legendary Surfers Volume 1 by Malcolm Gualt-Williams
  25. ^ Sonnen Sloan. "The Evolution of the Surfboard". Retrieved 2008-11-04. 
  26. ^ Dave Parmenter. "Longboards - Surfing A to Z". Retrieved 2008-11-05. 
  27. ^ Kent Senatore. "Surfboard Design". Retrieved 2009-05-17. 
  28. ^ "The Surfboard".  
  29. ^ "The Cardiff Kook - America's First Surfers". 


See also

The first stand up surfboard ridden in Australia by Duke Kahanamoku and Isabel Letham is an oversized longboard with enough volume to support two people.


However modern day Alaias can be much thinner. Many are a mere 3/4 of an inch and can be as short as 6 feet (1.8 m). Common woods used in current construction are paulownia, cedar, and other woods suitable for salty ocean waters. The tails come in different styles. The boards are notoriously difficult to ride.

A traditional finless wooden surfboard, typically ridden by ancient native Hawaiians. The surfboard typically runs 17 feet (5.2 m) 200 pounds (91 kg)[29]


Originally reserved for Hawaiian royalty due to its size and weight, these wooden boards can exceed lengths of 24 feet (7.3 m) and reach weights up to 200 pounds (91 kg).[28]


Named after Malibu, California, this racy longboard shape is a little narrower than most, with slightly pulled in nose and tail sections for extra maneuverability on Mailbu's famous right hand point breaks. This classic shape has been ridden and praised by experienced surfers for its maneuverability and performance. Classic tricks that can be performed on a Malibu are "Hang Fives" and "Hang tens" whereby the surfer walks to the nose of the board and hangs 5 or 10 toes over the nose, the "soul arch", drop knee turns, head dips, switch stance maneuvers, and so on.

The Malibu

The mini tanker is basically a shortened longboard shape that utilizes the same longboard design elements and enhanced maneuverability due to the shorter shape. These boards are normally ridden by women and children which provide smaller individuals with much more control than your traditional 9 foot longboard.[27]

Mini Tanker

The 2+1 longboard is the most versatile board of the longboard family, offering greater maneuverability. Sometimes referred as a "single-fin with training wheels", the 2+1's fins actually takes the features of the classic longboard and the Tri-fin. The fins of the 2+1 takes the rigid stability of a classic longboard, and fuses with the strength and drive of a Tri-fin.[16]

The 2+1

The modern longboard has undergone many changes since its earlier models in the past. Today's longboard is much lighter than its predecessors. Its polyurethane foam and fiberglass design allows less drag on waves. Today's longboards are typically 8 to 10 feet (2.4 to 3.0 m) long, although some ride boards up to 12 feet (3.7 m) in length. Additionally, there is a revival of stand-up paddle-based surfing with boards up to 14 feet (4.3 m) in length (for stability). The classic single-fin longboard retains much of its classic design including a single fin, weight, and considerable buoyancy.[16] A longboard with a single fin allows the board to pivot turn in order to remain in the curl of the wave. Due to recent advances in technology, the longboard has expanded its family into different variations of the classic longboard.

Modern longboards

It was not until the late 1950s and early 1960s when the surfboard design had closely evolved into today's modern longboard. The introduction of polyurethane foam and fiberglass became the technological leap in design. In the 1960s, the longboard continued to remain popular as its material changed from balsa wood to fiberglass and polyurethane foam. In the 1960s, the introduction of the shortboard, averaging 6 feet 6 inches (1.98 m), allowed surfers to make tighter turns, quicker maneuvers, and achieve faster speeds, thus radically changing the way people surfed. This "shortboard revolution" nearly made longboards obsolete for all practical purposes. But in the early 1990s, the longboard returned, integrating a number of the design features invented during the shortboard revolution. Surfers rediscovered the grace and poise – the "glide" – of the longboard, and the fun of classic maneuvers that are not possible on a shortboard. In some circles the battle between longboards and shortboards continues. But many surfers live by a philosophy of finding the joy of surfing a mix of boards and surfing styles to suit the waves of the day.

By the early 20th century, only a handful of people surfed, mostly at Waikiki. But there, it started to grow again. Beginning in 1912, Duke Kahanamoku, a Hawaiian Olympic swimmer in the early 1900s, brought surfing to mainland United States and Australia. Because of this, Duke is considered the "Father of Modern Surfing". From that point on, surfing became an integral part of the California beach lifestyle. In Malibu (in Los Angeles county), the beach was so popular amongst the early surfers that it lent its name to the type of longboard, the Malibu Surfboard. In the 1920s boards made of plywood or planking called Hollowboards came into use. These were typically 15 to 20 feet (4.6 to 6.1 m) in length and very light. During the 1950s, the surf trend took off dramatically as it obtained a substantial amount of popularity as a sport.[25] The design and material of longboards in the 1950s changed from using solid wood, to balsa wood. The length of the boards still remained the same at an average of 10.5 feet, and had then become widely produced.[26]

Longboards are the original and very first variety of board used in standup surfing. Ever since the sixth-century CE the ancient Hawaiians have used 8-to-30-foot (2.4 to 9.1 m) solid wooden boards when practicing their ancient art of Hoe he'e nalu. Surfing was brought to the Hawaiian Islands by Polynesians and has since become popular worldwide. The ancient boards were carved and fashioned out of solid wood, reaching lengths of 10 to 14 feet (3.0 to 4.3 m) long and weighing as much as 150 pounds (68 kg). Both men and women, royalty and commoners surfed. But the longest of boards (the Olo) was reserved for royalty.[24] During the 19th century, some extreme western missionaries actively discouraged surfing, viewing it as sinful. Surfing almost died out completely. In recent times replicas have been made of Olo's and alaia's by experienced surfers and shapers wishing to explore the roots of the sport.

Classic longboards

The longboard is primarily a single-finned surfboard with large rounded nose and length of 8 to 12 feet (2.4 to 3.7 m). Noseriders are a class of longboards which enable the rider to walk to the tip and nose ride. These are also called "Mals", a shortened form of "Malibu boards". They range from 8 to 14 feet (2.4 to 4.3 m) long, or 3 feet (0.91 m) taller than the rider in overall length. The advantage of a longboard is its substantial buoyancy and planing surface enable surfers to ride waves generally deemed too small to propel a shortboard. Longboards are more suitable for beginners because of the board's size and ease of catching waves. In the proper conditions, a skilled surfer can ride a wave standing on the nose of a longboard with their toes over the nose's edge: in this way, with the "toes on the nose", the surfer can "hang ten".

Balsa Longboard.
Duke Kahanamoku and longboard, 1920
A longboard.


Big wave boards of length 7 to 12 feet (2.1 to 3.7 m) are considered guns. These have a thin, almost needle-like profile with single, quad, or thruster fin set up. It has the appearance of a shortboard but at a longboard size. Guns are often used at big waves locations such as Waimea Bay, Jaws (Hawaii), and Mavericks.


The funboard combines elements of both shortboards and longboards and are generally midsized, usually 7 to 8 feet (2.1 to 2.4 m). The funboard's design allows waves to be caught more easily than a shortboard, yet with a shape that makes it more maneuverable than a longboard; hence it is a popular type of surfboard, especially among beginners or those transitioning from longboarding to the more difficult shortboarding. It is considered a good combination of the speed of a longboard and the maneuverability of a shortboard.[23]


Usually a short stubby board under 6 feet (1.8 m) in length developed from kneeboards in 1967 by Steve Lis. Other prominent fish shapers include Skip Frye, Larry Mabile and Steve Brom. Primarily a twin fin set up with a swallow tail shape and popular in smaller waves, the fish enjoyed a resurgence in popularity in the early 2000s after legendary surfer Tom Curren rode one during an ASP event at Hossegor. Note, any type of board (such as shortboard or mini-longboard) can have a fish tail, and these are commonly referred to as a "fish", but they lack the other properties of a traditional, or "retro" fish as described here.


Balsa Fish.

Modern hybrid boards are usually 6 feet to 8 feet 6 inches (1.8–2.3 m) in length with a more rounded profile and tail shape. Surfed in smaller waves with any fin set up. They are more about having fun than high performance or tricks. They can be easier to ride for beginning surfers and generally perform well in surfing conditions where the more traditional long and short boards might not.[22]


A Bonzer is a surfboard designed by the Campbell Brothers that can have three or five fins and is punctuated with a large center fin and 2-4 smaller side fins(side bites). This, combined with deep double concave channels creates a distinctive board. The manufacturer has shown that these channels create versital and controlled characteristics using the venturi effect which guides the water off of the surface of the board through a narrowed passage.[21]

Since the late 1960s when Gordon Clark found the optimum formulation of urethane foam, many of the surfboards in common use have been of the shortboard variety between 6 feet and 7 feet in length with a pointed nose and a rounded or squarish tail, typically with three "skegs" (fins) but sometimes with two or as many as five. Surfers generally find a shortboard quick to maneuver compared with other types of surfboards, but because of a lack of flotation due to the smaller size, the shortboard is harder to catch waves with, often requiring steeper, larger and more powerful waves and very late takeoffs, where the surfer catches the wave at the critical moment before it breaks.


Board types and variations

The chambering method follows a system in which planks of paulownia wood are selected and the rocker of the board is cut into each. The planks are then chambered to reduce weight, and then bonded together to form a hollow or "chambered" blank.

The parallel profile system was developed from cold molded (double diagonal) boat building, and uses at least four layers of material laminated over a male mold into a curved blank, including enough wood for rails, which are then shaped.

The current construction methods descend from the 1930s Tom Blake paddleboarding method, which favors a central stringer with individually shaped transverse ribs covered with a skin and rails. A modern interpretation of Tom Blake's work is the perimeter stringer method used by some manufacturers, utilizing laminated rails as stringers connected with a series of plywood ribs. This skeleton is then sheathed with 5mm-thick wood strips, creating a fast hollow board with good flex properties.

Hollow wooden surfboards are made of wood and epoxy or oil (as a sustainable alternative to epoxy), and are a reversion to using wood after the foam became dominant in the 1950s. Hollow wooden surfboards specifically have no foam in their construction. (Boards made with foam and wood are commonly known as compsands or veneer boards.) Various construction methods are used to hollow the inside of the surfboard and lighten the weight of the completed board. Generally, a hollow wood surfboard is 30% to 300% heavier than a standard foam and resin surfboard. The main inspiration, apart from beauty, is that this is a more environmentally friendly method of construction (compared to epoxy and polyurethane methods) which uses fast-growing plantation wood such as paulownia, cedar, spruce, redwood, and, of course, balsa.

Hollow wooden boards

Balsa wood boards are lighter, more buoyant and easier to handle than other boards. These boards have some disadvantages, however: they are not as sturdy as solid redwood boards.

The Ochroma pyramidale wood's surfboard history originates in the Hawaiians, and the wood lead surfing's landfall on the US west coast in the 1940s. Being light and strong, balsa wood was long considered a perfect material for surfboards. Shapers could not use this fragile wood to make entire surfboards until after WWII, when fiberglass skins were invented.

Balsa MiniMal.

Balsa boards

Although foam boards are usually shaped by hand, the use of machines to shape them has become increasingly popular. Vacuum forming and modern sandwich construction techniques borrowed from other industries have also become common. Many surfers have switched to riding sandwich-construction epoxy boards which have become especially popular with beginner surfers as they provide a durable, inexpensive, entry-level board.[20]

Surfboards are usually constructed using polyurethane foam. They are made stronger with one or more stringers going down the middle of the board. The foam is molded into a "blank", in the rough shape of a surfboard.[19] Once the blanks have been made they are given to shapers. Shapers then cut, plane, and sand the board to its specifications. Finally, the board is covered in one or more layers of fiberglass cloth and resin. It is during this stage that the fins or boxes for removable fins are attached and the leash plug installed. Another method of making boards is using epoxy resin and prolapse polystyrene foam, instead of polyester resin and polyurethane foam. In recent years, surfboards made out of balsa and a polystyrene core are becoming more popular. Even solid balsa surfboards are available.

Polyurethane (P.U.) boards

To achieve positive buoyancy and a stiff deck, shapers have always reached for a foam, often hardened with a tensile skin, using Toucan beak engineering concepts.


In board design, the "stringer" is a board's central plane of reflection, down the middle of its deck and its keel. In construction, the stringer can have no special parts, or can embed a stiff, thin, vertical slat, usually of wood but sometimes of carbon fiber, running from nose to tail. The stringer serves to increase the board's overall strength and reduce its flexibility. Some boards have multiple stringers.


The board's rails and deck may also be referred to as having rocker. A board with a v-shaped tail, for example, has had the lower/ outer portion of its rear rails reduced, increasing its tail rail rocker. Having a flat, even deck rocker will increase a board's flexibility, while a convex deck rocker creates a board that is thicker along the board's stringer and stiffer in the water.

This refers to the vertical curve of the board between nose and tail. Rockers may be described as either heavy (steeply curved) or relaxed (less curved) and may be either continuous (a single curve between tip of nose and end of tail) or staged (distinct flat section in middle portion of board). The nose rocker or flip is the curve between the front tip and the middle or flattest portion of the board, and the tail rocker or kick is that between the tail and the middle/ flattest portion. An increase in flip helps keep the board from "pearling"; larger boards often require a greater flip. A larger kick adds maneuverability and lift to the tail at speed and provides tail sensitivity in critical turns. More relaxed rockers help the board to handle better on flatter sections of water, while heavy rockers increase the board's overall form drag but also give true lift when reaching planing speed and have a smaller turning radius.


The edges of the board. A rounded rail is called "soft", while a more squared off rail is called "hard", and rails that are in between are termed "50/50" ("fifty-fifty"). Larger, fuller rails contain a greater volume of foam giving the board increased buoyancy along the edge, while sharper, narrower rails have less volume, making the board easier to "sink" and "lean on edge". While riding down the line, one rail is always in the water while the other is suspended freely in the air. Turns are largely a matter of transitioning from rail to tail and over to the contralateral (opposing) rail.


The shape of the tail affects how a board responds. Tail shapes vary from square, pin, squash, swallow, diamond, and so on—each one in turn having its own family of smaller variants.


Chart of various types of surf board tails

The front tip of the board. This can be pointed or rounded and can be made with a steep incline ("rocker", see below) or a gentle one.


Also known as a "leash plug", is an indentation in the deck of the board close to the tail that contains a small metal bar that a short cord can be girth hitched to for attaching a leash.

Leash cup

Leashes are still the source of some contention in surfing today as, although they are now accepted as mandatory equipment for shortboarders, many longboarders refuse to wear them, claiming it interferes with their ability to walk up and down the board. At crowded surf spots with large waves, it is argued that the freedom of not wearing a leash is secondary to the safety of others.

Ultimately, urethane was the material of choice for leashes. The urethane design was patented by David Hattrick (Australian Patent 505,451 issued September 5, 1977). However, he built the prototype in 1972 while surfing an isolated surf break called Cactus in the Great Australian Bight. Necessity was the mother of invention as one of the largest breeding grounds for white pointer sharks was nearby. He then settled in the Margaret River area of Western Australian initially making leg ropes of this design for surfing friends. Later in the 70's, he established Pipe Lines surfing products and developed a design that could be patented. This design also won an Australian Design Award in 1979.

Jack O'Neill lost his left eye in a surf leash accident as the surgical tubing used in the early designs allowed the leash to overstretch, causing the surfboard to fly back towards the surfer. Subsequent cords were made with less elastic materials such as bungee cords.[18]

Prior to leashes' introduction in 1971, surfers who fell off their boards had to swim to retrieve them with runaway boards being an inconvenience to the surfer and a danger to other surfers. Santa Cruz resident Pat O'Neill is credited with popularizing the surf leash.[18] His initial designs consisted of surgical cord attached to a board with a suction cup. At the 1971 Malibu international surfing competition, Pat offered leashes to his competitors in the event. Consequently, he was disqualified from the event for wearing his leash, dubbed a kook cord by those at the event. However, over the next year, the leash became a ubiquitous tool in the surfing world.[18]

A surfboard leash or leg rope is the cord that attaches a surfboard to the surfer. It prevents the surfboard from being swept away by waves and stops runaway surfboards from hitting other surfers and swimmers. Modern leashes comprise a urethane cord where one end has a band with a velcro strap attached to the surfer's trailing foot, and the opposite has a velcro strap attached to the tail end of the surfboard.

The leash attaches a surfboard to the surfer.


Created by professional surfer Sean Mattison as a rear stabilization fin. Dubbed a "guitar pick" the nubster was designed to be used as a fifth fin. The Nubster helped professional surfer Kelly Slater win contests in New York and Portugal in 2011.[17]

Nubster Fin Seen In Middle


A "Quad" four fins, typically arranged as two pairs of thrusters in wing formation, which are quick down the line but tend to lose energy through turns. The energy is lost as the board goes up the wave because the fins are now vectoring energy from the oncoming water toward the back of the board, bleeding speed.


The tri-fin's design attempts to incorporate the glide of a longboard and the performance of a shortboard into a single layout.[16] The additional fins ensure that even what riding down the line, two, or at least one, vertical control surface is in black water (not unstable foam) allows riders better turning capabilities. In a Thruster, the symmetric, usually larger, single center fin is flanked by twin asymmetric, cambered fins. The camber is angled front in and top in, directing energy from the incoming wave to lift the board and straighten it, not dissimilar from the force vectoring provided by the geometry of a rocket's nozzle.

Thrusters and Tri-fins

3D printing may well be the next frontier in surf fin manufacture.

In 2004 Frank Fish [13] introduced the world to Whale Bumps with their Tubercle Effect Several fin manufacturers tried making some fins at that time, after the article was discussed on Swaylock's design Forum. The process of grinding bumps, which are properly foiled, into an existing fin is an arduous, time consuming task. Hand foiling tubercles can take up to 40 hours. Roy Stuart [14] worked on wooden prototypes for years before creating the first polycarbonate, 3d printed, whale bumped surfboard fins in 2013.[15]

Spitfire fins are based on the Wing configuration used by Spitfire aeroplanes. The elliptical wing shapes work very well as surfboard fins and several manufacturers make fins with this more upright stance, as it increases drive and manueverability.

Fins with self-adjusting camber offer the improved qualities in both port side and starboard side sailing directions.

Fins with a camber have an asymmetrical profile. In windsurfing camber is used to increase the lift to drag ratio of the fin and to minimise cavitation and the risk of spin-out. In particular windsurfers trying to improve speed records use camber fins, as the maximum performance is required on one down-wind course direction. As the camber is fixed to one side, performance when sailing in one direction is improved but performance in the other way is deteriorated.

Fins with winglets—tiny wings—were invented in 2005. The purpose of winglets, as in airplane design, is to increase lift (horizontal turning force in the case of surfboard fins) while reducing drag, by reducing the fin-tip vortex.

Winged fins are another type of surfboard fin, the genesis of which was America's Cup sailboat design.[12] The Starfin was designed in the 1980s by the America's Cup yacht designer, Ben Lexcen, who had designed the winged keel for the America's Cup boat, Australia II. The small thruster-sized fin, the RedTip 3D is manufactured by FCS.

Bullet Fins were invented in the 2005 by Ron Pettibone to increase surfboard hull planing and rail-to-rail transition speed. The patent-pending fins are based on 50 years of hydrodynamic research on the bulbous bow hull design. Just as with the bow of a ship, the traditional surfboard fin creates a wave as it displaces the water in its path. The resulting turbulence places drag on the surfboard.[11] The bulb of the Bullet Fin reduces this drag by creating a new (primary) fin wave in front of the original (secondary) wave. This new bulb wave is designed to be nearly 180 degrees out of phase with the original fin wave to subtract its turbulence thus reducing fin drag.

Tunnel fins were invented in the 60's by Richard Deese,[10] and were found on longboards by multiple manufacturers of that era, including Dewey Weber. Bob Bolen, A.K.A. 'the Greek', patented the "Turbo Tunnel" in the late 1990s. Since the mid 90s half tunnel fins have mainly been used on very long hollow wooden surfboards mainly surfed by Roy Stuart.

In the early 90s removable fin systems were developed and embraced. This provides a standardized system that allows fins to be easily removed or replaced, utilizing set screws to hold the fins in place. These systems provided surfers with the ability to alter the riding characteristics of a surfboard, by changing the size and shape of fins used. This innovation opened the market to a range of fin designs, including single foiled fins, concave inside surfaces, and curved fins. Another variation of fin was later designed in the time frame known as the soul fin, a sleek bendable attachment.

[9] He created a prototype and 30 years later his "thruster" design is still the most popular fin design for surfboards.[9] had the idea for a new, equal size, version of the existing three fin prototypes which was later dubbed the "thruster".Simon Anderson In October 1980, after seeing a twin fin surfboard with a "trigger point" fin [8].Mark Richards The single fin changed little until the late 70s, when a second was added and popularised by Australian [7]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.