World Library  
Flag as Inappropriate
Email this Article

Tectonostratigraphy

Article Id: WHEBN0017611567
Reproduction Date:

Title: Tectonostratigraphy  
Author: World Heritage Encyclopedia
Language: English
Subject: Yenisey Fold Belt, Moldanubian Zone, Moine Supergroup, Geology of Nepal, Magnetostratigraphy
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Tectonostratigraphy

In geology, tectonostratigraphy refers either to rock sequences in which large-scale layering is caused by the stacking of thrust sheets or nappes in areas of thrust tectonics or the effects of tectonics on lithostratigraphy.

Tectonically formed stratigraphy

One example of such a tectonostratigraphy is the Scandinavian Caledonides.[1] Within the entire exposed 1800 km length of this orogenic belt the following sequence is recognised from the base upwards:

  • Autochthon
undisturbed foreland of the Baltic plate
  • Parautochthon
thrust sheets that have moved only a short distance (up to 10s of km) from their original position
far travelled thrust sheets derived from the Baltic plate passive margin, mainly sediments associated with the break-up of Rodinia
  • Middle allochthon
also derived from the margin of the Baltic plate, Proterozoic basement and its psammitic cover
  • Upper allochthon
thrust sheets including island arc and ophiolitic sequences
  • Uppermost allochthon
thrust sheets containing sediments with fossil assemblages indicating an origin on the margin of the Laurentian plate

This vertically stacked sequence thus represents the passive margins of Baltica and Laurentia and intervening island arcs and back-arc basins telescoped together and emplaced on top of the Baltic Shield, involving hundreds of km of shortening.

Within this overall stratigraphy the individual layers have their own tectonostratigraphy of stacked thrust sheets.

Generalised structural cross-section through the central part of the Gulf of Suez. PZ-LK = Paleozoic to lower Cretaceous Nubia (reservoir rock); UK-EO = Upper Cretaceous to Eocene pre-rift carbonate (source rock); N, R, K, and B = syn- and post-rift Nukhul, Rudeis, Kareem and Belayim formation (sources, reservoirs, seals and overburden); SG = South Gharib salt (seal and overburden); Z=Zeit (seals and overburden); and PP = Plio-Pleistocene (overburden)

Effects of active tectonics on lithostratigraphy

Tectonic events are typically recorded in sediments being deposited at the same time. In the case of a rift, for instance, the sedimentary sequence is normally broken down into three parts:[2]

  • The pre-rift includes a sequence deposited before the onset of rifting, recognised by the lack of thickness and sedimentary facies changes across the rift faults.
  • The syn-rift includes a sequence deposited during active rifting, typically showing facies and thickness changes across the active faults, unconformities on the fault footwalls may pass laterally into continuous conformable sequences in the hanging walls.
  • The post-rift includes a sequence deposited after the rifting has finished, it may still show thickness and facies changes around the rift faults due to the effects of differential compaction and remnant rift topography, particularly in the earliest part of the sequence.

This relatively straightforward nomenclature may become difficult to use, however, in the case of multiphase rifting with the post-rift from one event being the pre-rift to a later event.

References

  1. ^ Roberts,D. & Gee,D. 1985. An introduction to the structure of the Scandinavian Caledonides. In Gee, D. G., and Sturt, B. A., eds. The Caledonide Orogen - Scandinavia and related areas.John Wiley and Sons, Chichester, 55-68.
  2. ^ Jackson, C A L ,Gawthorpe, R L, Leppard, C W , Sharp, I R 2006. Rift-initiation development of normal fault blocks: insights from the Hammam Faraun fault block, Suez Rift, Egypt. Journal of the Geological Society, 163, 165-183.[1]

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.