World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0004362673
Reproduction Date:

Title: Tetrafluoroborate  
Author: World Heritage Encyclopedia
Language: English
Subject: Copper(II) tetrafluoroborate, Acid, Supercapacitor, Boron
Publisher: World Heritage Encyclopedia


The structure of the tetrafluoroborate anion, BF4

Tetrafluoroborate is the anion BF4. This tetrahedral species is isoelectronic with tetrafluoromethane, CF4 and tetrafluoroammonium NF4+, and is valence isoelectronic with many stable and important species including the closely related anion perchlorate, ClO4. It arises by the reaction of fluoride salts with the Lewis acid BF3, treatment of tetrafluoroboric acid with base, or by treatment of boric acid with hydrofluoric acid.

As an anion in inorganic and organic chemistry

The popularization of BF4 has led to decreased use of ClO4 in the laboratory. With organic compounds, especially amine derivatives, ClO4 forms potentially explosive derivatives. One disadvantage to BF4 is its slight sensitivity to hydrolysis, whereas ClO4 does not suffer from this problem. Safety considerations, however, overshadow this inconvenience.

The utility of BF4 arises because its salts are often more soluble in organic solvents than the related nitrate or halide salts. Furthermore, BF4 is less nucleophilic and basic than nitrates and halides. Thus, when using salts of BF4, one can usually assume that the cation is the reactive agent and this tetrahedral anion is inert. BF4 owes its inertness to two factors: (i) it is symmetrical so that the negative charge is distributed equally over several (four) atoms, and (ii) it is composed of highly electronegative fluorine atoms, which diminish the basicity of the anion. Related to BF4 is hexafluorophosphate, PF6, which is even more stable toward hydrolysis and whose salts tend to be more lipophilic.

Illustrative of a fluoroborate salt is [Ni(CH3CH2OH)6](BF4)2, a kinetically labile octahedral complex, which is used as a source of Ni2+.[1]

Extremely reactive cations such as those derived from Ti, Zr, Hf, and Si do in fact abstract fluoride from BF4, so in such cases BF4 is not an "innocent" anion and less coordinating anions must be employed.

Transition and heavy metal fluoroborates are produced in the same manner as other fluoroborate salts; the respective metal salts are added to reacted boric and hydrofluoric acids. Tin, lead, copper, and nickel fluoroborates are prepared through electrolysis of these metals in a solution containing HBF4.

Examples of salts

Potassium fluoroborate is obtained by treating potassium carbonate with boric acid and hydrofluoric acid.

B(OH)3 + 4 HF → HBF4 + 3 H2O
2 HBF4 + K2CO3 → 2 KBF4 + H2CO3

Fluoroborates of alkali metals and ammonium ions crystallize as water-soluble hydrates with the exception of potassium, rubidium, and caesium.

Fluoroborate salts are often associated with highly reactive compounds. Some examples include

See also


  1. ^ Willem L. Driessen, Jan Reedijk (1992). "Solid Solvates: The Use of Weak Ligands in Coordination Chemistry".  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.