 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

Valuation (logic)

Article Id: WHEBN0017456938
Reproduction Date:

 Title: Valuation (logic) Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

Valuation (logic)

In logic and model theory, a valuation can be:

Mathematical logic

In mathematical logic (especially model theory), a valuation is an assignment of truth values to formal sentences that follows a truth schema. Valuations are also called truth assignments.

In propositional logic, there are no quantifiers, and formulas are built from propositional variables using logical connectives. In this context, a valuation begins with an assignment of a truth value to each propositional variable. This assignment can be uniquely extended to an assignment of truth values to all propositional formulas.

In first-order logic, a language consists of a collection of constant symbols, a collection of function symbols, and a collection of relation symbols. Formulas are built out of atomic formulas using logical connectives and quantifiers. A structure consists of a set (domain of discourse) that determines the range of the quantifiers, along with interpretations of the constant, function, and relation symbols in the language. Corresponding to each structure is a unique truth assignment for all sentences (formulas with no free variables) in the language.

Notation

If v is a valuation, that is, a mapping from the atoms to the set \{ t, f \}, then the double-bracket notation is commonly used to denote a valuation; that is, v(\phi)=_v for a proposition \phi.