#jsDisabledContent { display:none; } My Account | Register | Help

# 2 31 Polytope

Article Id: WHEBN0019070163
Reproduction Date:

 Title: 2 31 Polytope Author: World Heritage Encyclopedia Language: English Subject: Collection: 7-Polytopes Publisher: World Heritage Encyclopedia Publication Date:

### 2 31 Polytope

 Orthogonal projections in E6 Coxeter plane 321 Rectified 321 Birectified 321 Rectified 132 132 231 Rectified 231

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.

The rectified 231 is constructed by points at the mid-edges of the 231.

These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

## Contents

• 2_31 polytope 1
• Alternate names 1.1
• Construction 1.2
• Images 1.3
• Related polytopes and honeycombs 1.4
• Rectified 2_31 polytope 2
• Alternate names 2.1
• Construction 2.2
• Images 2.3
• Notes 4
• References 5

## 2_31 polytope

Gosset 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol 231
Coxeter diagram
6-faces 632:
56 221
576 {35}
5-faces 4788:
756 211
4032 {34}
4-faces 16128:
4032 201
12096 {33}
Cells 20160 {32}
Faces 10080 {3}
Edges 2016
Vertices 126
Vertex figure 131
Coxeter group E7, [33,2,1]
Properties convex

The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.

This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.

### Alternate names

• E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
• It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
• Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]

### Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the 6-simplex. There are 56 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, .

Removing the node on the end of the 3-length branch leaves the 221. There are 576 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, .

### Images

Coxeter plane projections
E7 E6 / F4 B6 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

### Related polytopes and honeycombs

2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2×A1 E4=A4 E5=D5 E6 E7 E8 E9 = {\tilde{E}}_{8} = E8+ E10 = {\bar{T}}_8 = E8++
Coxeter
diagram
Symmetry [3-1,2,1] [30,2,1] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph - -
Name 2-1,1 201 211 221 231 241 251 261

## Rectified 2_31 polytope

Rectified 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol t1(231)
Coxeter diagram
6-faces 758
5-faces 10332
4-faces 47880
Cells 100800
Faces 90720
Edges 30240
Vertices 2016
Vertex figure 6-demicube
Coxeter group E7, [33,2,1]
Properties convex

The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.

### Alternate names

• Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[3]

### Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the rectified 6-simplex, .

Removing the node on the end of the 2-length branch leaves the, 6-demicube, .

Removing the node on the end of the 3-length branch leaves the rectified 221, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node.

### Images

Coxeter plane projections
E7 E6 / F4 B6 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

## Notes

1. ^ Elte, 1912
2. ^ Klitzing, (x3o3o3o *c3o3o3o - laq)
3. ^ Klitzing, (o3x3o3o *c3o3o3o - rolaq)

## References

• Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
• H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
• Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
• Richard Klitzing, 7D, uniform polytopes (polyexa) x3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.