World Library  
Flag as Inappropriate
Email this Article

7-demicube

Article Id: WHEBN0010275958
Reproduction Date:

Title: 7-demicube  
Author: World Heritage Encyclopedia
Language: English
Subject: 2 41 polytope, 1 42 polytope, Seven-dimensional space, Coxeter group, 8-demicube
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

7-demicube

Demihepteract
(7-demicube)

Petrie polygon projection
Type Uniform 7-polytope
Family demihypercube
Coxeter symbol 141
Schläfli symbol {3,34,1} = h{4,35}
s{21,1,1,1,1,1}
Coxeter diagram =
6-faces 78 14 {31,3,1}
64 {35}
5-faces 532 84 {31,2,1}
448 {34}
4-faces 1624 280 {31,1,1}
1344 {33}
Cells 2800 560 {31,0,1}
2240 {3,3}
Faces 2240 {3}
Edges 672
Vertices 64
Vertex figure Rectified 6-simplex
Symmetry group D7, [36,1,1] = [1+,4,35]
[26]+
Dual ?
Properties convex

In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Coxeter named this polytope as 141 from its Coxeter diagram, with a ring on one of the 1-length branches, .

Cartesian coordinates

Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract:

(±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.


Images

Related polytopes

There are 95 uniform polytopes with D6 symmetry, 63 are shared by the B6 symmetry, and 32 are unique:


References

  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Richard Klitzing, 7D uniform polytopes (polyexa), x3o3o *b3o3o3o3o - hesa


External links

  • Olshevsky, George, Demihepteract at Glossary for Hyperspace.
  • Multi-dimensional Glossary
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.