#jsDisabledContent { display:none; } My Account | Register | Help

# Akra–Bazzi method

Article Id: WHEBN0000230982
Reproduction Date:

 Title: Akra–Bazzi method Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Akra–Bazzi method

In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes. It is a generalization of the well-known master theorem, which assumes that the sub-problems have equal size.

## Contents

• The formula 1
• An example 2
• Significance 3
• References 4

## The formula

The Akra–Bazzi method applies to recurrence formulas of the form

T(x)=g(x) + \sum_{i=1}^k a_i T(b_i x + h_i(x))\qquad \text{for }x \geq x_0.

The conditions for usage are:

• sufficient base cases are provided
• a_i and b_i are constants for all i
• a_i > 0 for all i
• 0 < b_i < 1 for all i
• \left|g(x)\right| \in O(x^c), where c is a constant and O notates Big O notation
• \left| h_i(x) \right| \in O\left(\frac{x}{(\log x)^2}\right) for all i
• x_0 is a constant

The asymptotic behavior of T(x) is found by determining the value of p for which \sum_{i=1}^k a_i b_i^p = 1 and plugging that value into the equation

T(x) \in \Theta \left( x^p\left( 1+\int_1^x \frac{g(u)}{u^{p+1}}du \right)\right)

(see Θ). Intuitively, h_i(x) represents a small perturbation in the index of T. By noting that \lfloor b_i x \rfloor = b_i x + (\lfloor b_i x \rfloor - b_i x) and that \lfloor b_i x \rfloor - b_i x is always between 0 and 1, h_i(x) can be used to ignore the floor function in the index. Similarly, one can also ignore the ceiling function. For example, T(n) = n + T \left(\frac{1}{2} n \right) and T(n) = n + T \left(\left\lfloor \frac{1}{2} n \right\rfloor \right) will, as per the Akra–Bazzi theorem, have the same asymptotic behavior.

## An example

Suppose T(n) is defined as 1 for integers 0 \leq n \leq 3 and n^2 + \frac{7}{4} T \left( \left\lfloor \frac{1}{2} n \right\rfloor \right) + T \left( \left\lceil \frac{3}{4} n \right\rceil \right) for integers n > 3. In applying the Akra–Bazzi method, the first step is to find the value of p for which \frac{7}{4} \left(\frac{1}{2}\right)^p + \left(\frac{3}{4} \right)^p = 1. In this example, p = 2. Then, using the formula, the asymptotic behavior can be determined as follows:

\begin{align} T(x) & \in \Theta \left( x^p\left( 1+\int_1^x \frac{g(u)}{u^{p+1}}\,du \right)\right) \\ & = \Theta \left( x^2 \left( 1+\int_1^x \frac{u^2}{u^3}\,du \right)\right) \\ & = \Theta(x^2(1 + \ln x)) \\ & = \Theta(x^2 \log x). \end{align}

## Significance

The Akra–Bazzi method is more useful than most other techniques for determining asymptotic behavior because it covers such a wide variety of cases. Its primary application is the approximation of the runtime of many divide-and-conquer algorithms. For example, in the merge sort, the number of comparisons required in the worst case, which is roughly proportional to its runtime, is given recursively as T(1) = 0 and

T(n) = T\left(\left\lfloor \frac{1}{2} n \right\rfloor \right) + T\left(\left\lceil \frac{1}{2} n \right\rceil \right) + n - 1

for integers n > 0, and can thus be computed using the Akra–Bazzi method to be \Theta(n \log n).

## References

• Mohamad Akra, Louay Bazzi: On the solution of linear recurrence equations. Computational Optimization and Applications 10(2):195–210, 1998.
• Tom Leighton: Notes on Better Master Theorems for Divide-and-Conquer Recurrences, Manuscript. Massachusetts Institute of Technology, 1996, 9 pages.
• Proof and application on few examples
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.