World Library  
Flag as Inappropriate
Email this Article

Algebraic surfaces

Article Id: WHEBN0001302881
Reproduction Date:

Title: Algebraic surfaces  
Author: World Heritage Encyclopedia
Language: English
Subject: Lothar Göttsche
Publisher: World Heritage Encyclopedia

Algebraic surfaces

In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold.

The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old.

Examples of algebraic surfaces include (κ is the Kodaira dimension):

For more examples see the list of algebraic surfaces.

The first five examples are in fact birationally equivalent. That is, for example, a cubic surface has a function field isomorphic to that of the projective plane, being the rational functions in two indeterminates. The cartesian product of two curves also provides examples.

The birational geometry of algebraic surfaces is rich, because of blowing up (also known as a monoidal transformation); under which a point is replaced by the curve of all limiting tangent directions coming into it (a projective line). Certain curves may also be blown down, but there is a restriction (self-intersection number must be −1).

Basic results on algebraic surfaces include the Hodge index theorem, and the division into five groups of birational equivalence classes called the classification of algebraic surfaces. The general type class, of Kodaira dimension 2, is very large (degree 5 or larger for a non-singular surface in P3 lies in it, for example).

There are essential three Hodge number invariants of a surface. Of those, h1,0 was classically called the irregularity and denoted by q; and h2,0 was called the geometric genus pg. The third, h1,1, is not a birational invariant, because blowing up can add whole curves, with classes in H1,1. It is known that Hodge cycles are algebraic, and that algebraic equivalence coincides with homological equivalence, so that h1,1 is an upper bound for ρ, the rank of the Néron-Severi group. The arithmetic genus pa is the difference

geometric genus − irregularity.

In fact this explains why the irregularity got its name, as a kind of 'error term'.

The Riemann-Roch theorem for surfaces was first formulated by Max Noether. The families of curves on surfaces can be classified, in a sense, and give rise to much of their interesting geometry.


External links

  • Free program SURFER to visualize algebraic surfaces in real-time, including a user gallery.
  • SingSurf an interactive 3D viewer for algebraic surfaces.
  • Some beautiful algebraic surfaces
  • Some more, with their respective equations
  • Page on Algebraic Surfaces started in 2008
  • Overview and thoughts on designing Algebraic surfaces
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.