World Library  
Flag as Inappropriate
Email this Article

Automotive electronics

Article Id: WHEBN0022221458
Reproduction Date:

Title: Automotive electronics  
Author: World Heritage Encyclopedia
Language: English
Subject: Load dump, Automotive electronics, Integrated Micro-Electronics, Inc., Automotive engineering, Tantalum pentoxide
Publisher: World Heritage Encyclopedia

Automotive electronics

Automotive electronics are any electrically-generated systems used in road vehicles, such as: carputers, telematics, in-car entertainment systems, etc...

Automotive electronics originated from the need to control engines. The first electronic pieces were used to control engine functions and were referred to as engine control units (ECU). As electronic controls began to be used for more automotive applications, the acronym ECU took on the more general meaning of "electronic control unit", and then specific ECU's were developed. Now, ECU's are modular. Two types include engine control modules (ECM) or transmission control modules (TCM).

A modern car may have up to 100 ECU's and a commercial vehicle up to 40.

Automotive electronics or automotive embedded systems are distributed systems, and according to different domains in the automotive field, they can be classified into:

  1. Engine electronics
  2. Transmission electronics
  3. Chassis electronics
  4. Active safety
  5. Driver assistance
  6. Passenger comfort
  7. Entertainment systems

Engine electronics

One of the most demanding electronic parts of an automobile is the engine control unit. Engine controls demand one of the highest real time deadlines, as the engine itself is a very fast and complex part of the automobile. Of all the electronics in any car the computing power of the engine control unit is the highest, typically a 32-bit processor.

It controls such things as:

In a diesel engine:

In a gasoline engine:

  • Lambda control
  • OBD (On-Board Diagnostics)
  • Cooling system control
  • Ignition system control
  • Lubrication system control (only a few have electronic control)
  • Fuel injection rate control
  • Throttle control

Many more engine parameters are actively monitored and controlled in real-time. There are about 20 to 50 that measure pressure, temperature, flow, engine speed, oxygen level and NOx level plus other parameters at different points within the engine. All these sensor signals are sent to the ECU, which has the logic circuits to do the actual controlling. The ECU output is connected to different actuators for the throttle valve, EGR valve, rack (in VGTs), fuel injector (using a pulse-width modulated signal), dosing injector and more. There are about 20 to 30 actuators in all.

Transmission electronics

These control the transmission system, mainly the shifting of the gears for better shift comfort and to lower torque interrupt while shifting. Automatic transmissions use controls for their operation, and also many semi-automatic transmissions having a fully automatic clutch or a semi-auto clutch (declutching only). The engine control unit and the transmission control exchange messages, sensor signals and control signals for their operation. the transmission of revelition the uto elecronic to absur b the capacitors

Chassis electronics

The chassis system has lot of sub-systems which monitor various parameters and are actively controlled:

Active safety

These systems are always ready to act when there is a collision in progress or to prevent it when it senses a dangerous situation:

Driver assistance

Passenger comfort

  • Automatic climate control
  • Electronic seat adjustment with memory
  • Automatic wipers
  • Automatic headlamps - adjusts beam automatically
  • Automatic cooling - temperature adjustment

Infotainment systems

All of the above systems forms an infotainment system. Developmental methods for these systems vary according to each manufacturer. Different tools are used for both hardware and software development.

Functional safety requirements

In order to minimize the risk of dangerous failures, safety related electronic systems have to be developed following the applicable product liability requirements. Disregard for, or inadequate application of these standards can lead to not only personal injuries, but also severe legal and economic consequences such as product cancellations or recalls.

The IEC 61508 standard, generally applicable to electrical/electronic/programmable safety-related products, is only partially adequate for automotive-development requirements. Consequently for the automotive industry, this standard is replaced by the existing ISO 26262, currently released as a Final Draft International Standard (FDIS). ISO/DIS 26262 describes the entire product life-cycle of safety related electrical/electronic systems for road vehicles. It has been published as an international standard in its final version in November 2011. The implementation of this new standard will result in modifications and various innovations in the automobile electronics development process, as it covers the complete product life-cycle from the concept phase until its decommissioning.

When developing electric vehicles, it is essential to consider all electrical, chemical, and mechanical safety aspects. The development of safe, high-voltage batteries is regarded as a major challenge. There is still no appendage that addresses safety related aspects of electric propulsion and storage systems. As a result, it is quite a challenge to navigate through the inconsistencies and gaps in the technical standards and legal requirements.[1]


  1. ^ Consumer Information Bulletin by SGS P. 9, Retrieved 09/20/2012

Further reading

  • William B. Ribbens and Norman P. Mansour (2003). Understanding automotive electronics (6th ed.). Newnes.  

External links

  • International Automotive Electronics Congress
  • Society of Automotive Engineers
  • Clemson Vehicular Electronics Laboratory (Automotive Electronics Section)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.