World Library  
Flag as Inappropriate
Email this Article

Banded iron formations

Article Id: WHEBN0010814521
Reproduction Date:

Title: Banded iron formations  
Author: World Heritage Encyclopedia
Language: English
Subject: Snowball Earth, Sulfur cycle
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Banded iron formations


Banded iron formations (also known as banded ironstone formations or BIFs) are distinctive units of ironstones generally have a different genesis.

Banded iron beds are an important commercial source of iron ore, such as the Pilbara region of Western Australia and the Animikie Group in Minnesota.

Relation to atmospheric oxygenation

The formations are abundant around the time of the and that is problematic to explain (see below).

Origins

The conventional concept is that the banded iron layers were formed in sea water as the result of oxygen being released by photosynthetic cyanobacteria, combining with dissolved iron in Earth's oceans to form insoluble iron oxides, which precipitated out, forming a thin layer on the substrate, which may have been anoxic mud (forming shale and chert). Each band is similar to a varve, to the extent that the banding is assumed to result from cyclic variations in available oxygen.

It is unclear whether these banded ironstone formations were seasonal, followed some feedback oscillation in the ocean's complex system or followed some other cycle.[6] It is assumed that initially the Earth started out with vast amounts of iron dissolved in the world's acidic seas.

Eventually, as photosynthetic organisms generated oxygen, the available iron in the Earth's oceans was precipitated out as iron oxides. At the tipping point where the oceans became permanently oxygenated, small variations in oxygen production produced pulses of free oxygen in the surface waters, alternating with pulses of iron oxide deposition.

Snowball Earth scenario

Until 1992,[7] it was assumed that the rare, later (younger) banded iron deposits represented unusual conditions where oxygen was depleted locally, and iron-rich waters could form and then come into contact with oxygenated water.

An alternate explanation of these later deposits was undergoing much discussion as part of the Snowball Earth hypothesis. Several hypotheses exist for the initiation of the Snowball Earths. The initiation mechanisms which include the breakup of the early equatorial supercontinent (Rodinia), the first colonization of the land by early lichens and fungi and variations in the Earth's axial tilt are yet to be convincingly identified. In a Snowball Earth state the earth's continents, and possibly seas at low latitudes, were totally covered in an ice age.

If this was the case, Earth's free oxygen may have been nearly or totally depleted during a severe ice age circa 750 to 580 million years ago (mya). Dissolved iron then accumulated in the oxygen-poor oceans (possibly from seafloor hydrothermal vents). Following the thawing of the Earth, the seas became oxygenated once more causing the precipitation of the iron.

Another mechanism for BIF's, also proposed in the context of the Snowball Earth discussion, is by deposition from metal-rich brines in the vicinity of hydrothermally active rift zones.[8] Alternatively, some geochemists suggest that BIFs could form by direct oxidation of iron by microbial anoxygenic phototrophs.[9]

Effect of asteroid impact

Northern Minnesota's banded iron formations lie directly underneath a thick layer of material only recently recognized as ejecta from the Sudbury Basin impact. At the time of formation the earth had a single supercontinent with substantial continental shelves.

An asteroid (estimated at 10 km across) slammed into waters about 1,000 m deep some 1.85 billion years ago. Computer models suggest that the tsunami would have been at least 1,000 m at the epicentre, and 100 m high about 3,000 km away. Those immense waves and large underwater landslides triggered by the impact stirred the ocean, bringing oxygenated waters from the surface down to the ocean floor.[10]

Sediments deposited on the seafloor before the impact, including BIFs contained little if any oxidized iron (Fe(III)), but were high in reduced iron (Fe(II)). This Fe(III) to Fe(II) ratio suggests that most parts of the ocean were relatively devoid of oxygen.

Marine sediments deposited after the impact included substantial amounts of Fe(III) but very little Fe(II). This suggests that sizeable amounts of dissolved oxygen were available to form sediments rich in Fe(III). Following the impact dissolved iron was mixed into the deepest parts of the ocean. This would have choked off most of the supply of Fe(II) to shallower waters where BIFs typically accumulated.

The geological record suggests that environmental changes were happening in oceans worldwide even before the Sudbury impact. The role the Sudbury Basin impact played in temporarily shutting down BIF accumulation is not fully understood.

See also

Notes

References

  • , University of Washington Doc format
  • Klein, Cornelis, 2005, Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins, American Mineralogist; October 2005; v. 90; no. 10; p. 1473–1499; http://ammin.geoscienceworld.org/cgi/content/short/90/10/1473 abstract.
  • Andreas Kappler, et al., 2005, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology; November 2005; v. 33; no. 11; p. 865–868; http://www.gps.caltech.edu/~claudia/papers/kappleretal_GEO2005.pdf

External links

  • -logo.svg 

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.