World Library  
Flag as Inappropriate
Email this Article




A bio-battery is an energy storing device that is powered by glucose, such as the glucose in human blood. When enzymes in human bodies break down glucose, several electrons and protons are released. Therefore, by using enzymes to break down glucose, bio-batteries directly receive energy from glucose. These batteries then store this energy for later use.[1] This concept is almost identical to how both plants and many animals obtain energy. Although the batteries are still being tested before being commercially sold, several research teams and engineers are working to further advance the development of these batteries.


  • Workings 1
    • Structure 1.1
    • Glucose 1.2
    • Process 1.3
  • Advantages 2
  • Disadvantages 3
  • Future 4
  • See also 5
  • References 6



Like any cell battery, bio-batteries contain an anode, cathode, separator and electrolyte with each component layered on top of another. Anodes and cathodes are the negative and positive areas on a battery that allow electrons to flow in and out. The anode is located at the top of the battery and the cathode is located at the bottom of the battery.[1] Anodes allow electrons to flow in from outside the battery, whereas cathodes allow current to flow out from the battery.

Between the anode and the cathode lies the electrolyte which contains a separator. The main function of the separator is to keep the cathode and anode separated, to avoid electrical short circuits. This system as a whole, allows for a flow of protons (H+) and electrons (e-) which ultimately generates electricity.[2]


Bio batteries are heavily based on the amount of glucose available. This glucose (sugar) can be provided from nearly anything, including soda, waste materials (such as old papers), or the glucose in living organisms.[3] The decomposition of materials to glucose (if they are not already in the proper stage) is the main step in getting the cycle started. Materials can be converted into glucose through the process of enzymatic hydrolysis. Enzymatic hydrolysis is the process in which cellulose (an insoluble substance) is converted to glucose by the addition of enzymes.[4] Once glucose is present, oxygen and other enzymes can act on it to further produce protons and electrons.


Similar to how human bodies convert food to energy using enzymes, bio-batteries use enzymes to convert glucose into energy.[1] When glucose first enters the battery, it enters through the anode. In the anode the sugar is broken down, producing both electrons and protons.

Glucose → Gluconolactone + 2H+ + 2e

These electrons and protons produced now play an important role in creating energy. They travel through the electrolyte, where the separator redirects electrons to go through the mediator to get to the cathode.[1] On the other hand, protons are redirected to go through the separator to get to the cathode side of the battery.[2]

The cathode then consists of an oxidation reduction reaction.[1] This reaction uses the protons and electrons, with the addition of oxygen gas, to produce water.

O2 +4H+ + 4e → 2H2O

There is a flow created from the anode to the cathode which is what generates the electricity in the bio-battery.[1] The flow of electrons and protons in the system are what create this generation of electricity.


A significant advantage that bio-batteries have in comparison to other batteries is their ability to allow an instant recharge.[5] In other words through a constant supply of sugar, or glucose, bio batteries are able to continuously keep themselves charged without an external power supply. Bio batteries are also a source of non-flammable, and non-toxic fuel. This provides a clean alternative renewable power source.[5]


Compared to conventional batteries, such as lithium batteries, bio-batteries are less likely to retain most of their energy.[6] This causes a problem when it comes to long term usage and storage of energy for these batteries. However, researchers are continuing to develop the battery in order to make it a more practical replacement for current batteries and sources of energy.[6]


Bio-batteries have a very bright future ahead of them as test productions and research have been increasing over recent years. They serve as a new form of energy that is proving to be environmentally friendly, as well as successful, in producing and reserving energy.[5] Although the batteries are still being tested before being commercially sold, several research teams and engineers are working to further advance the development of these batteries.[5] One corporation consistently working on the advancement of these bio batteries is Sony. In fact, Sony has created a bio battery that gives an output power of 50 mW (milliwatts). This output is enough to power approximately one MP3 player.[2] Sony, however, is planning to continue their research and development on bio batteries for commercial use. In the coming years, Sony plans to take bio batteries to market, starting with toys and devices that require a small amount of energy.[6] Several other research facilities, such as Stanford and Northeastern, are also in the process of researching and experimenting with bio batteries as an alternative source of energy. Since there is glucose in human blood, some research facilities are also looking towards the medical benefits of bio-batteries and their possible functions in human bodies. Although this has yet to be further tested, research continues on the subject surrounding both the material/device and medical usage of bio-batteries.

See also


  1. ^ a b c d e f "Bio Battery". Sony Corporation. 
  2. ^ a b c Kannan, Renugopalakrishnan, Filipek, Audette, Li, Munukutla. "Bio-Batteries and Bio-Fuel Cells: Leveraging on Electronic Charge Transfer Proteins". American Scientific Publishers. 
  3. ^ "Sony's bio battery turns waste paper into electricity". BBC. 
  4. ^ "Enzymatic Hydrolysis". 
  5. ^ a b c d "Bio-Battery: Clean, Renewable Power Source". CFD Research Corporation. Retrieved 17 October 2012. 
  6. ^ a b c "CELLULOSE-BASED BATTERIES". Confederation of Swedish Enterprise. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.