World Library  
Flag as Inappropriate
Email this Article

Blinding (cryptography)

Article Id: WHEBN0000490067
Reproduction Date:

Title: Blinding (cryptography)  
Author: World Heritage Encyclopedia
Language: English
Subject: Blinding, Blind signature, Timing attack, Paillier cryptosystem, Power analysis
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Blinding (cryptography)

In cryptography, blinding is a technique by which an agent can provide a service to (i.e., compute a function for) a client in an encoded form without knowing either the real input or the real output. Blinding techniques also have applications to preventing side-channel attacks on encryption devices.

More precisely, Alice has an input x and Oscar has a function f. Alice would like Oscar to compute y = f(x) for her without revealing either x or y to him. The reason for her wanting this might be that she doesn't know the function f or that she does not have the resources to compute it. Alice "blinds" the message by encoding it into some other input E(x); the encoding E must be a bijection on the input space of f, ideally a random permutation. Oscar gives her f(E(x)), to which she applies a decoding D to obtain D(f(E(x))) = y.

Not all functions allow for blind computation. At other times, blinding must be applied with care. An example of the latter is Rabin-Williams signatures. If blinding is applied to the formatted message but the random value does not honor Jacobi requirements on p and q, then it could lead to private key recovery. An demonstration of the recovery can be seen in CVE-2015-2141 discovered by Evgeny Sidorov.

The most common application of blinding is the blind signature. In a blind signature protocol, the signer digitally signs a message without being able to learn its content.

The OTP is an application of blinding to the secure communication problem, by its very nature. Alice would like to send a message to Bob secretly, however all of their communication can be read by Oscar. Therefore Alice sends the message after blinding it with a secret key or OTP that she shares with Bob. Bob reverses the blinding after receiving the message. In this example, the function f is the identity and E and D are both typically the XOR operation.

Blinding can also be used to prevent certain side channel attacks on asymmetric encryption schemes. Side channel attacks allow an adversary to recover information about the input to a cryptographic operation, by measuring something other than the algorithm's result, e.g., power consumption, computation time, or radio-frequency emanations by a device. Typically these attacks depend on the attacker knowing the characteristics of the algorithm, as well as (some) inputs. In this setting, blinding serves to alter the algorithm's input into some unpredictable state. Depending on the characteristics of the blinding function, this can prevent some or all leakage of useful information. Note that security depends also on the resistance of the blinding functions themselves to side-channel attacks.

For example, in RSA blinding involves computing the blinding operation E(x) = xre mod N, where r is a random integer between 1 and N and relatively prime to N (i.e. gcd(r, N) = 1), x is the ciphertext, e is the public RSA exponent and N is the RSA modulus. As usual, the decryption function f(z) = zd mod N is applied thus giving f(E(x)) = xdred mod N = xdr mod N. Finally it is unblinded using the function D(z) = zr−1 mod N. Since D(f(E(x))) = xd mod N, this is indeed an RSA decryption. However, when decrypting in this manner, an adversary who is able to measure time taken by this operation would not be able to make use of this information (by applying timing attacks RSA is known to be vulnerable to) as she does not know the constant r and hence has no knowledge of the real input fed to the RSA primitives.

Examples

  • Blinding in GPG 1.x

External links

  • Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and Other Systems
  • Breaking the Rabin-Williams digital signature system implementation in the Crypto++ library
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.