World Library  
Flag as Inappropriate
Email this Article

Boron suboxide

Article Id: WHEBN0010938230
Reproduction Date:

Title: Boron suboxide  
Author: World Heritage Encyclopedia
Language: English
Subject: Boron nitride, Inorganic compounds by element, List of inorganic compounds, Boron oxide, Suboxide, Boron monoxide
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Boron suboxide

Boron suboxide
Properties
Molecular formula B6O
Molar mass 80.865 g/mol
Appearance Reddish icosahedral twinned crystals
Density 2.56 g/cm3[1]
Melting point

2000 °C[2]

 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Boron suboxide (chemical formula B6O) is a solid compound containing six boron atoms and one oxygen atom. Its structure is built of eight icosahedra at the apexes of the rhombohedral unit cell (space group R3-m). Each icosahedron is composed of twelve boron atoms. Two oxygen atoms are located in the interstices along the [111] rhombohedral direction. Due to its short interatomic bond lengths and strongly covalent character, B6O displays a range of outstanding physical and chemical properties such as great hardness (close to that of rhenium diboride and boron nitride), low mass density, high thermal conductivity, high chemical inertness, and excellent wear resistance.[3]

B6O can be synthesized by reducing B2O3 with boron or by oxidation of boron with zinc oxide or other oxidants.[1] These boron suboxide materials formed at or near ambient pressure are generally oxygen deficient (B6Ox, x<0.9) and have poor crystallinity and very small grain size (less than 5 µm). High pressure applied during the synthesis of B6O can significantly increase the crystallinity, oxygen stoichiometry, and crystal size of the products. Mixtures of boron and B2O3 powders were usually used as starting materials in the reported methods for B6O synthesis.[3]

Oxygen-deficient boron suboxide (B6Ox, x<0.9) might form icosahedral particles, which are neither single crystals nor quasicrystals, but twinned groups of twenty tetrahedral crystals.[2][4][5]

B 6O of the α-rohombohedral boron type has been investigated because of its ceramic nature (hardness, high melting point, chemical stability, and low density) as a new structural material. In addition to this, these borides have unique bonding not easily accessible by the usual valence theory. Although an X-ray emission spectroscopic method indicated a probable parameter range for the oxygen site of B6O, the correct oxygen position remained open to question until Rietveld analysis of X-ray diffraction profiles on B6O powders were first carried out successfully, even though these were preliminary investigations.[1]

Preparation Method

The preparation method of B6O is classified into three categories: (1) solid state reaction between B and B2O3, (2) reduction of B2O3 and (3) oxidation of B. The high vapor pressure of B2O3 at elevated temperatures would cause the B excess composition in the process of the solid state reaction between B and B2O3. In the reduction of B2O3, reductants that can be used include, but not limited to, Si and Mg which remain in B6O as an impurity in the process. While in the oxidation process of B, oxidants such as ZnO would contaminate B6O in the process.[6]

Chemical Properties

Some researchers have reported the crystal structure, which helped identify some mechanical properties of B6O. B6O has a strong covalent nature and is easy to compose at high temperature more than 1973 K.[6] Boron Suboxide has also been reported to exhibit a wide range of superior properties such as high hardness with low density, high mechanical strength, oxidation resistance up to high temperatures as well as its high chemical inertness.[7] Preliminary first-principle ab initio density functional calculations of the structural properties boron suboxide (B6O) suggest that the strength of bonding in B6O may be enhanced by the presence of a high electronegativity interstitial in the structure. The computational calculations confirm the shortening of covalent bonds which is believed to favor higher elastic constants and hardness values.[7]

Applications

The potential applications of B6O as wear-reduction coatings for high-speed cutting tools, abrasives, or other high wear applications, for example, has been an object of intense interest in recent years. However, despite the intensive research efforts, the commercial applications are yet to be realized. This is partly because of the low fracture toughness of hot pressed material and the considerable practical challenges associated with the densifying stoichiometric B6O material with good crystallinity. Furthermore, numerous mechanical properties of the material were until recently rather poorly understood.[7]

See also

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.