World Library  
Flag as Inappropriate
Email this Article

Bucket-brigade device

Article Id: WHEBN0008561045
Reproduction Date:

Title: Bucket-brigade device  
Author: World Heritage Encyclopedia
Language: English
Subject: Martin Hannett, EG&G, Doepfer A-100, Mu-tron, Delay (audio effect)
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Bucket-brigade device

A bucket brigade or bucket-brigade device (BBD) is a discrete-time analogue delay line,[1] developed in 1969 by F. Sangster and K. Teer of the Philips Research Labs. It consists of a series of capacitance sections C0 to Cn. The stored analogue signal is moved along the line of capacitors, one step at each clock cycle. The name comes from analogy with the term bucket brigade, used for a line of people passing buckets of water.

In most signal processing applications, bucket brigades have been replaced by devices that use digital signal processing, manipulating samples in digital form. Bucket brigades still see use in specialty applications, such as guitar effects.

A well-known integrated circuit device around 1980, the Reticon SAD-1024[2] implemented two 512-stage analog delay lines in a 16-pin DIP. It allowed clock frequencies ranging from 1.5 kHz to more than 1.5 MHz. The SAD-512 was a single delay line version. The Philips Semiconductors TDA1022[3] similarly offered a 512-stage delay line but with a clock rate range of 5–500 kHz. Other common BBD chips include the Panasonic MN3005,[4] MN3007[5] and MN3205,[6] with the primary differences being the available delay time.

In 2009, the guitar effects pedal manufacturer Visual Sound recommissioned production of the Panasonic-designed MN3102[7] and MN3207[8] BBD chip that it offers for sale.[9]

Despite being analog in their representation of individual signal voltage samples, these devices are discrete in the time domain and thus are limited by the Nyquist–Shannon sampling theorem; both the input and output signals are generally low-pass filtered. The input must be low-pass filtered to avoid aliasing effects, while the output is low-pass filtered for reconstruction. (A low-pass is used as an approximation to the Whittaker–Shannon interpolation formula.)

The concept of the bucket-brigade device led to the charge-coupled device (CCD) developed by Bell Labs.

References

  • Theuwissen, A. (1995). Solid-State Imaging with Charge-Coupled Devices.de:Eimerkettenspeicher
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.