World Library  
Flag as Inappropriate
Email this Article

Cannabinoid receptor type 2

Article Id: WHEBN0014438412
Reproduction Date:

Title: Cannabinoid receptor type 2  
Author: World Heritage Encyclopedia
Language: English
Subject: JWH-133, Cannabipiperidiethanone, Synthetic cannabis, Tetrahydrocannabinol, Cannabinoid receptor type 1
Publisher: World Heritage Encyclopedia

Cannabinoid receptor type 2

Cannabinoid receptor 2 (macrophage)

Rendering based on PDB .
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; CB-2; CB2; CX5
External IDs IUPHAR: ChEMBL: GeneCards:
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

The cannabinoid receptor type 2, abbreviated as CB2, is a G protein-coupled receptor from the cannabinoid receptor family that in humans is encoded by the CNR2 gene.[1][2] It is closely related to the cannabinoid receptor type 1, which is largely responsible for the efficacy of endocannabinoid-mediated presynaptic-inhibition, the psychoactive properties of tetrahydrocannabinol, the active agent in marijuana, and other phytocannabinoids (natural cannabinoids).[1][3] The principal endogenous ligand for the CB2 receptor is 2-arachidonoylglycerol (2-AG).[2]

CB2 was cloned in 1993 by a research group from Cambridge looking for a second cannabinoid receptor that could explain the pharmacological properties of tetrahydrocannabinol.[1] The receptor was identified among cDNAs based on its similarity in amino-acid sequence to the cannabinoid receptor type 1 (CB1) receptor, discovered in 1990.[4] The discovery of this receptor helped provide a molecular explanation for the established effects of cannabinoids on the immune system.


The CB2 receptor is encoded by the CNR2 gene.[1][5] Approximately 360 amino acids comprise the human CB2 receptor, making it somewhat shorter than the 473-amino-acid-long CB1 receptor.[5]

As is commonly seen in G protein-coupled receptors, the CB2 receptor has seven transmembrane spanning domains,[6] a glycosylated N-terminus, and an intracellular C-terminus.[5] The C-terminus of CB2 receptors appears to play a critical role in the regulation of ligand-induced receptor desensitization and downregulation following repeated agonist application,[5] perhaps causing the receptor to become less responsive to particular ligands.

The human CB1 and the CB2 receptors possess approximately 44% amino acid similarity.[1] When only the transmembrane regions of the receptors are considered, however, the amino acid similarity between the two receptor subtypes is approximately 68%.[5] The amino acid sequence of the CB2 receptor is less highly conserved across human and rodent species as compared to the amino acid sequence of the CB1 receptor.[7] Based on computer modeling, ligand interactions with CB2 receptor residues S3.31 and F5.46 appears to determine differences between CB1 and CB2 receptor selectivity.[8] In CB2 receptors, lipophilic groups interact with the F5.46 residue, allowing them to form a hydrogen bond with the S3.31 residue.[8] These interactions induce a conformational change in the receptor structure, which triggers the activation of various intracellular signaling pathways. Further research is needed to determine the exact molecular mechanisms of signaling pathway activation.[8]


Like the CB1 receptors, CB2 receptors inhibit the activity of adenylyl cyclase through their Gi/Goα subunits.[9][10] Through their Gβγ subunits, CB2 receptors are also known to be coupled to the MAPK-ERK pathway,[9][10][11] a complex and highly conserved signal transduction pathway, which critically regulates a number of important cellular processes in both mature and developing tissues.[12] Activation of the MAPK-ERK pathway by CB2 receptor agonists acting through the Gβγ subunit ultimately results in changes in cell migration[13] as well as in an induction of the growth-related gene Zif268 (also known as Krox-24, NGFI-A, and egr-1).[11] The Zifi268 gene encodes a transcriptional regulator implicated in neuroplasticity and long term memory formation.[14]

At present, there are five recognized cannabinoids produced endogenously throughout the body: Arachidonoylethanolamine (anandamide), 2-arachidonoyl glycerol (2-AG), 2-arachidonyl glyceryl ether (noladin ether), virodhamine,[9] as well as the recently discovered N-arachidonoyl-dopamine (NADA).[15] Many of these ligands appear to exhibit properties of functional selectivity at the CB2 receptor: 2-AG preferentially activates the MAPK-ERK pathway, while noladin preferentially inhibits adenylyl cyclase.[9] Like noladin, the synthetic ligand CP-55,940 has also been shown to preferentially inhibit adenylyl cyclase in CB2 receptors.[9] Together, these results support the emerging concept of agonist-directed trafficking at the cannabinoid receptors.


Immune System

Initial investigation of CB2 receptor expression patterns focused on the presence of CB2 receptors in the peripheral tissues of the immune system [6] and found CB2 receptor mRNA is found throughout tissues of the spleen, tonsils, and thymus gland.[6] Northern blot analysis further indicates the expression of the CNR2 gene in immune tissues,[6] where they are primarily responsible for mediating cytokine release.[16] These receptors were primarily localized on immune cells such as monocytes, macrophages, B-cells, and T-cells.[2][6][17][18][19]


Further investigation into the expression patterns of the CB2 receptors revealed that CB2 receptor gene transcripts are also expressed in the brain, though not as densely as the CB1 receptor and located on different cells.[20] Unlike the CB1 receptor, in the brain, CB2 receptors are found primarily on microglia, but not neurons.[16][21]

Gastrointestinal System

CB2 receptors are also found throughout the gastrointestinal system, where they modulate intestinal inflammatory response.[22][23] Thus, CB2 receptor agonists are a potential therapeutic target for inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis.[23][24] The role of endocannabinoids, as such, play an important role in inhibiting unnecessary immune action upon the natural gut flora. Dysfunction of this system, perhaps from overactive FAAH activity, could result in IBD.

Peripheral Nervous System

Application of CB2-specific antagonists has found that these receptors are also involved in mediating analgesic effects in the peripheral nervous system. However, these receptors are not expressed by nociceptive sensory neurons, and at present are believed to exist on an undetermined, non-neuronal cell. Possible candidates include mast cells, known to facilitate the inflammatory response. Cannabinoid mediated inhibition of these responses may cause a decrease in the perception of noxious-stimuli.[4]


Immune System

Primary research on the functioning of the CB2 receptor has focused on the receptor's effects on the immunological activity of leukocytes.[25] To be specific, this receptor has been implicated in a variety of modulatory functions, including immune suppression, induction of apoptosis, and induction of cell migration.[2] Through their inhibition of adenylyl cyclase via their Gi/Goα subunits, CB2 receptor agonists cause a reduction in the intracellular levels of cyclic adenosine monophosphate (cAMP).[26][27] Although the exact role of the cAMP cascade in the regulation of immune responses is currently under debate, laboratories have previously demonstrated that inhibition of adenylyl cyclase by CB2 receptor agonists results in a reduction in the binding of transcription factor CREB (cAMP response element-binding protein) to DNA.[25] This reduction causes changes in the expression of critical immunoregulatory genes[26] and ultimately suppression of immune function.[27]

Later studies examining the effect of synthetic cannabinoid agonist JWH-015 on CB2 receptors revealed that changes in cAMP levels result in the phosphorylation of leukocyte receptor tyrosine kinase at Tyr-505, leading to an inhibition of T cell receptor signaling. Thus, CB2 agonists may also be useful for treatment of inflammation and pain, and are currently being investigated, in particular for forms of pain that do not respond well to conventional treatments, such as neuropathic pain.[28] Consistent with these findings are studies that demonstrate increased CB2 receptor expression in the spinal cord, dorsal root ganglion, and activated microglia in the rodent neuropathic pain model, as well as on human heptocellular carcinoma tumor samples.[29]

CB2 receptors have also been implicated in the regulation of homing and retention of marginal zone B cells. A study using knock-out mice found that CB2 receptor is essential for the maintenance of both MZ B cells and their precursor T2-MZP, though not their development. Both B cells and their precursors lacking this receptor were found in reduced numbers, explained by the secondary finding that 2-AG signaling was demonstrated to induce proper B cell migration to the MZ. Without the receptor, there was an undesirable spike in the blood concentration of MZ B lineage cells and a significant reduction in the production of IgM. While the mechanism behind this process is not fully understood, the researchers suggested that this process may be due to the activation-dependent decrease in cAMP concentration, leading to reduced transcription of genes regulated by CREB, indirectly increasing TCR signaling and IL-2 production.[2] Together, these findings demonstrate that the endocannabinoid system maybe exploited to enhance immunity to certain pathogens and autoimmune diseases.

Clinical Applications

CB2 receptors may have possible therapeutic roles in the treatment of neurodegenerative disorders such as Alzheimer's disease.[30][31] Specifically, the CB2 agonist JWH-015 was shown to induce macrophages to remove native beta-amyloid protein from frozen human tissues.[32] In patient's with Alzheimer's disease, beta-amyloid proteins form aggregates known as senile plaques, which disrupt neural functioning.[33]

Changes in endocannabinoid levels and/or CB2 receptor expressions have been reported in almost all diseases affecting humans,[34] ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer. The prevalence of this trend suggests that modulating CB2 receptor activity by either selective CB2 receptor agonists or inverse agonists/antagonists depending on the disease and its progression holds unique therapeutic potential for these pathologies [34]

Modulation of cocaine reward

Researchers investigated the effects of CB2 agonists on cocaine self-administration in mice. Systemic administration of JWH-133 reduced the number of self-infusions of cocaine in mice, as well as reducing locomotor activity and the break point (maximum amount of level presses to obtain cocaine). Local injection of JWH-133 into the nucleus accumbens was found to produce the same effects as systemic administration. Systemic administration of JWH-133 also reduced basal and cocaine-induced elevations of extracellular dopamine in the nucleus accumbens. These findings were mimicked by another, structurally different CB2 agonist, GW-405,833, and were reversed by the administration of a CB2 antagonist, AM-630.


Many selective ligands for the CB2 receptor are now available.[35]

Partial agonists

Unspecified efficacy agonists


Inverse agonists

Binding affinities

CB1 affinity (Ki) Efficacy towards CB1 CB2 affinity (Ki) Efficacy towards CB2 Type References
Anandamide 78 nM Full agonist 370 nM Partial agonist Endogenous
N-Arachidonoyl dopamine 250 nM Agonist 12000 nM ? Endogenous [36]
2-Arachidonoylglycerol 58.3 nM Full agonist 145 nM Full agonist Endogenous [36]
2-Arachidonyl glyceryl ether 21 nM Full agonist 480 nM Full agonist Endogenous
Tetrahydrocannabinol 10 nM Partial agonist 24 nM Partial agonist Phytogenic [37][37]
EGCG 33.6 μM Agonist >50 μM ? Phytogenic
AM-1221 52.3 nM Agonist 0.28 nM Agonist Synthetic [38]
AM-1235 1.5 nM Agonist 20.4 nM Agonist Synthetic [39]
AM-2232 0.28 nM Agonist 1.48 nM Agonist Synthetic [39]
UR-144 150 nM Full agonist 1.8 nM Full agonist Synthetic [40]
JWH-007 9.0 nM Agonist 2.94 nM Agonist Synthetic [41]
JWH-015 383 nM Agonist 13.8 nM Agonist Synthetic [41]
JWH-018 9.00 ± 5.00 nM Full agonist 2.94 ± 2.65 nM Full agonist Synthetic [42]

See also


  1. ^ a b c d e Munro S, Thomas KL, Abu-Shaar M (September 1993). "Molecular characterization of a peripheral receptor for cannabinoids". Nature 365 (6441): 61–5.  
  2. ^ a b c d e Basu, S.; Ray, A.; Dittel, B. N. (2011). "Cannabinoid Receptor 2 (CB2) is Critical for the Homing and Retention of Marginal Zone B Lineage Cells and for Efficient T-independent Immune Responses". The Journal of Immunology 187 (11): 5720–5732.  
  3. ^ "Entrez Gene: CNR2 cannabinoid receptor 2 (macrophage)". 
  4. ^ a b Elphick, M. R.; Egertova, M. (2001). "The neurobiology and evolution of cannabinoid signalling". Philosophical Transactions of the Royal Society B: Biological Sciences 356 (1407): 381–408.  
  5. ^ a b c d e Cabral GA, Griffin-Thomas L. (2009). "Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation.". Expert Rev Mol Med 11: e3.  
  6. ^ a b c d e Sylvaine G, Sophie M, Marchand J, Dussossoy D, Carriere D, Carayon P, Monsif B, Shire D, LE Fur G, Casellas P (1995). "Expression of Central and Peripheral Cannabinoid Receptors in Human Immune Tissues and Leukocyte Subpopulations". Eur J Biochem. 232 (1): 54–61.  
  7. ^ Griffin G, Tao Q, Abood ME (2000). "Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor". J Pharmacol Exp Ther. 292 (3): 886–894.  
  8. ^ a b c Tuccinardi T, Ferrarini PL, Manera C, Ortore G, Saccomanni G, Martinelli A. (2006). "Cannabinoid CB2/CB1 selectivity. Receptor modeling and automated docking analysis". J Med Chem 49 (3): 984–994.  
  9. ^ a b c d e Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL (2005). "Agonist-Directed Trafficking of Response by Endocannabinoids Acting at CB2 Receptors". J Pharmacol Exp Ther. 315 (2): 828–838.  
  10. ^ a b Demuth DG, Molleman A. (2006). "Cannabinoid Signalling". Life Sci 78 (6): 549–563.  
  11. ^ a b Bouaboula M, Poinot-Chazel C, Marchand J, Canat X, Bourrié B, Rinaldi-Carmona M, Calandra B, Le Fur G, Casellas P. (19966). "Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression.". Eur J Biochem 237 (3): 704–711.  
  12. ^ Shvartsman SY, Coppey M, Berezhkovskii AM (2009). "MAPK signaling in equations and embryos". Fly (Austin). 3 (1): 62–7.  
  13. ^ Klemke RL, Cai S, Gianni AL, Gallagher PJ, Lanerolle P, Cheresh DA. (1997). "Regulation of Cell Motility by Mitogen-activated Protein Kinase.". J Cell Bio. 137 (2): 481–492.  
  14. ^ Alberini CM. (2009). "Transcription factors in long-term memory and synaptic plasticity". Physiol Rev. 89 (1): 121–145.  
  15. ^ Bisogno T, Melck D, Bobrov MYu, Gretskaya NM, Bezuglov VV, De Petrocellis L, Di Marzo V (November 2000). "N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo". Biochem. J. 351 (3): 817–24.  
  16. ^ a b Pertwee, R. G. (2006). "The pharmacology of cannabinoid receptors and their ligands: An overview". International Journal of Obesity 30: S13–S18.  
  17. ^ Miller AM, Stella N (January 2008). "CB2 receptor-mediated migration of immune cells: it can go either way". Br. J. Pharmacol. 153 (2): 299–308.  
  18. ^ Ashton JC, Glass M (June 2007). "The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration". Curr Neuropharmacol 5 (2): 73–80.  
  19. ^ Centonze D, Battistini L, Maccarrone M (2008). "The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases". Curr. Pharm. Des. 14 (23): 2370–42.  
  20. ^ Onaivi ES (2006). "Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB2 receptors in the brain". Neuropsychobiology 54 (4): 231–46.  
  21. ^ Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (January 2008). "CB2 receptors in the brain: role in central immune function". Br. J. Pharmacol. 153 (2): 240–51.  
  22. ^ Izzo AA.; Ho, W; Pittman, QJ; Davison, JS; Sharkey, KA (2004). "Cannabinoids and intestinal motility: welcome to CB2 receptors.". Br J Pharmacol. 142 (8): 1247–54.  
  23. ^ a b Wright KL, Duncan M, Sharkey KA. (2008). "Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation". Br J Pharmacol. 153 (2): 263–70.  
  24. ^ Capasso R, Borrelli F, Aviello G, Romano B, Scalisi C, Capasso F, Izzo AA. (2008). "Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice". Br J Pharmacol. 154 (5): 1001–8.  
  25. ^ a b Kaminski NE. (1998). "Inhibition of the cAMP signaling cascade via cannabinoid receptors: a putative mechanism of immune modulation by cannabinoid compounds". Toxicol Lett. 102-103: 59–63.  
  26. ^ a b Herring AC, Koh WS, Kaminski NE. (1998). "Inhibition of the cyclic AMP signaling cascade and nuclear factor binding to CRE and kappaB elements by cannabinol, a minimally CNS-active cannabinoid". Biochem Pharmacol. 55 (7): 1013–23.  
  27. ^ a b Kaminski NE. (1996). "Immune regulation by cannabinoid compounds through the inhibition of the cyclic AMP signaling cascade and altered gene expression". Biochem Pharmacol. 52 (8): 1133–40.  
  28. ^ Cheng Y, Hitchcock SA (July 2007). "Targeting cannabinoid agonists for inflammatory and neuropathic pain". Expert Opin Investig Drugs 16 (7): 951–65.  
  29. ^ Pertwee, R. G. (2008). "The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin". British Journal of Pharmacology 153 (2): 199–215.  
  30. ^ Benito C, Núñez E, Tolón RM, et al. (2003). "Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains". J. Neurosci. 23 (35): 11136–41.  
  31. ^ Fernández-Ruiz J, Pazos MR, García-Arencibia M, Sagredo O, Ramos JA (April 2008). "Role of CB2 receptors in neuroprotective effects of cannabinoids". Mol. Cell. Endocrinol. 286 (1–2 Suppl 1): S91–6.  
  32. ^ Tolón RM, Núñez E, Pazos MR, Benito C, Castillo AI, Martínez-Orgado JA, Romero J. (2009). "The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages". Brain Res. 62 (11): 1984–9.  
  33. ^ Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. (2004). "The importance of neuritic plaques and tangles to the development and evolution of AD". Neurology 62 (11): 1984–9.  
  34. ^ a b Pacher P, Mechoulam R (2011). "Is lipid signaling through cannabinoid 2 receptors part of a protective system?". Prog Lipid Res. 50 (2): 193–211.  
  35. ^ Marriott KS, Huffman JW (2008). "Recent advances in the development of selective ligands for the cannabinoid CB(2) receptor". Curr Top Med Chem 8 (3): 187–204.  
  36. ^ a b Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross AR (2010). "International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2". Pharmacol. Rev. 62 (4): 588–631.  
  37. ^ a b "PDSP Database - UNC". Retrieved 11 June 2013. 
  38. ^ WO patent 200128557, Makriyannis A, Deng H, "Cannabimimetic indole derivatives", granted 2001-06-07 
  39. ^ a b US patent 7241799, Makriyannis A, Deng H, "Cannabimimetic indole derivatives", granted 2007-07-10 
  40. ^ Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (January 2010). "Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity". J. Med. Chem. 53 (1): 295–315.  
  41. ^ a b Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (August 2000). "Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2)receptor binding". Drug Alcohol Depend 60 (2): 133–40.  
  42. ^ Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (August 2000). "Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding". Drug Alcohol Depend 60 (2): 133–40.  

External links

  • "2"Cannabinoid Receptors: CB. IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. 

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.