World Library  
Flag as Inappropriate
Email this Article

Carbohydrate metabolism

Article Id: WHEBN0000383675
Reproduction Date:

Title: Carbohydrate metabolism  
Author: World Heritage Encyclopedia
Language: English
Subject: Metabolism, Gerty Cori, Pages needing attention/Health, Galactolysis, Fructolysis
Collection: Metabolism
Publisher: World Heritage Encyclopedia

Carbohydrate metabolism

Carbohydrate metabolism denotes the various organisms.

The most important carbohydrate is aerobic respiration metabolize glucose and oxygen to release energy with carbon dioxide and water as byproducts.

Carbohydrates can be chemically divided into complex and simple. Simple carbohydrates consist of single or double sugar units (monosaccharides and disaccharides, respectively). Sucrose or table sugar (a disaccharide) is a common example of a simple carbohydrate. Complex carbohydrates contain three or more sugar units linked in a chain, with most containing hundreds to thousands of sugar units. They are digested by enzymes to release the simple sugars. Starch, for example, is a polymer of glucose units and is typically broken down to glucose. Cellulose is also a polymer of glucose but it cannot be digested by most organisms. Some bacteria that produce enzymes for cellulose live inside the gut of some mammals such as cows, and when cows eat plants, the cellulose is broken down by the bacteria and some of it is released into the gut.

Doctors and scientists once believed that eating complex carbohydrates instead of sugars would help maintain lower blood glucose. Numerous studies suggest, however, that both sugars and starches produce an unpredictable range of glycemic and insulinemic responses.[2] While some studies support a more rapid absorption of sugars relative to starches[3] other studies reveal that many complex carbohydrates such as those found in bread, rice, and potatoes have glycemic indices similar to or higher than simple carbohydrates such as sucrose.[4] Sucrose, for example, has a glycemic index lower than expected because the sucrose molecule is half fructose, which has little effect on blood glucose.[5] The value of classifying carbohydrates as simple or complex is questionable. The glycemic index is a better predictor of a carbohydrate's effect on blood glucose.[6]

Carbohydrates are a superior short-term fuel for organisms because they are simpler to metabolize than protists and bacteria)), both being glucose polymers, are disassembled during digestion and absorbed as glucose. Some simple carbohydrates have their own enzymatic oxidation pathways, as do only a few of the more complex carbohydrates. The disaccharide lactose, for instance, requires the enzyme lactase to be broken into its monosaccharide components; many animals lack this enzyme in adulthood.

Carbohydrates are typically stored as long polymers of glucose molecules with acetyl-CoA, which is a feed stock for the fatty acid synthesis pathway; fatty acids, triglycerides, and other lipids are commonly used for long-term energy storage. The hydrophobic character of lipids makes them a much more compact form of energy storage than hydrophilic carbohydrates. However, animals, including humans, lack the necessary enzymatic machinery and so do not synthesize glucose from lipids, though glycerol can be converted to glucose.[8]

All carbohydrates share a general formula of approximately CnH2nOn; glucose is C6H12O6. Monosaccharides may be chemically bonded together to form disaccharides such as sucrose and longer polysaccharides such as starch and cellulose.


  • Catabolism 1
  • Metabolic pathways 2
  • Energy Production 3
  • Glucoregulation 4
  • Human diseases of carbohydrate metabolism 5
  • References 6
  • External links 7


Oligosaccharides and/or polysaccharides are typically cleaved into smaller monosaccharides by enzymes called glycoside hydrolases. The monosaccharide units then enter monosaccharide catabolism. Organisms vary in the range of monosaccharides they can absorb and use and they can also vary in the range of more complex carbohydrates they are capable of disassembling.

Metabolic pathways

  • Carbon fixation, or photosynthesis, in which CO2 is reduced to carbohydrate.
  • Glycolysis - the oxidation metabolism of glucose molecules to obtain ATP and pyruvate[9]
    • Pyruvate from glycolysis enters the pyruvate dehydrogenase complex.[10]
  • The pentose phosphate pathway, which acts in the conversion of hexoses into pentoses and in NADPH regeneration.[11] NADPH is an essential antioxidant in cells which prevents oxidative damage and acts as precursor for production of many biomolecules.
  • Glycogenesis - the conversion of excess glucose into glycogen as a cellular storage mechanism; this prevents excessive osmotic pressure buildup inside the cell
  • Glycogenolysis - the breakdown of glycogen into glucose, which provides a glucose supply for glucose-dependent tissues.
  • amino acids in cellular protein to glucose.

Metabolic use of glucose is highly important as an energy source for muscle cells and in the brain, and red blood cells.

Energy Production

Typically, a breakdown of one molecule of glucose by aerobic respiration (i.e. involving both glycolysis and Kreb's cycle) is about 33-35 ATP.[1] This is categorized as:

  • Anaerobic breakdown by glycolysis - yielding 8-10 ATP
  • Aerobic respiration by kreb's cycle - yielding 25 ATP


Glucoregulation is the maintenance of steady levels of glucose in the body; it is part of homeostasis, and so keeps a constant internal environment around cells in the body.

The hormone insulin is the primary regulatory signal in animals, suggesting that the basic mechanism is very old and very central to animal life. When present, it causes many tissue cells to take up glucose from the circulation, causes some cells to store glucose internally in the form of glycogen, causes some cells to take in and hold lipids, and in many cases controls cellular electrolyte balances and amino acid uptake as well. Its absence turns off glucose uptake into cells, reverses electrolyte adjustments, begins glycogen breakdown and glucose release into the circulation by some cells, begins lipid release from lipid storage cells, etc. The level of circulatory glucose (known informally as "blood sugar") is the most important signal to the insulin-producing cells. Because the level of circulatory glucose is largely determined by the intake of dietary carbohydrates, diet controls major aspects of metabolism via insulin. In humans, insulin is made by beta cells in the pancreas, fat is stored in adipose tissue cells, and glycogen is both stored and released as needed by liver cells. Regardless of insulin levels, no glucose is released to the blood from internal glycogen stores from muscle cells.

The hormone glucagon, on the other hand, has an effect opposite to that of insulin, forcing the conversion of glycogen in liver cells to glucose, which is then released into the blood. Muscle cells, however, lack the ability to export glucose into the blood. The release of glucagon is precipitated by low levels of blood glucose. Other hormones, notably growth hormone, cortisol, and certain catecholamines (such as epinepherine) have glucoregulatory actions similar to glucagon.

Human diseases of carbohydrate metabolism


  1. ^ a b Energetics of Cellular Respiration (Glucose Metabolism)
  2. ^ Blaack, EE; Saris, WHM (1995). "Health Aspects of Various Digestible Carbohydrates". Nutritional Research 15 (10): 1547-73. 
  3. ^ Wolever, Thomas M. S. (2006), The Glycaemic Index: A Physiological Classification of Dietary Carbohydrate, CABI, pg. 65, ISBN 9781845930516. “Indeed, blood glucose responses elicited by pure sugars and fruits suggest rapid absorption because the blood glucose concentration rises more quickly and falls more rapidly than after bread (Wolever et al., 1993; Lee and Wolever, 1998). Further evidence that sugars are rapidly absorbed is provided by recent studies indicating that the switch from oxidation of fat to carbohydrate occurs more rapidly after a high-sucrose meal than a high-starch meal, with the increase in carbohydrate oxidation being sustained for longer after the starch than the sucrose meal (Daly et al., 2000).”
  4. ^ Jenkins, DJ; Jenkins, AL; Wolever, TM; Josse, RG; Wong, GS (1984). "The glycaemic response to carbohydrate foods". The Lancet 324: 388–391.  
  5. ^ Wolever, Thomas M. S. (2006), The Glycaemic Index: A Physiological Classification of Dietary Carbohydrate, CABI, pg. 65, ISBN 9781845930516. "Sucrose has a low GI because only half of the molecule is glucose and the other half is fructose. So sugars with a low GI are considered to have a low GI primarily because they contain less glucose than starch rather than because they are slowly absorbed."
  6. ^ "Carbohydrates and Blood Sugar". The Nutrition Source. Harvard School of Public Health. Retrieved 16 September 2014. 
  7. ^ Watanabe, Hirofumi; Hiroaki Noda; Gaku Tokuda; Nathan Lo (23 July 1998). "A cellulase gene of termite origin". Nature 394 (6691): 330–331.  
  8. ^ G Cooper, The Cell, American Society of Microbiology, p 72
  9. ^ A note on glycolysis with animation
  10. ^ Kreb's Cycle or Citric Acid Cycle or Tricarboxylic Acid Cycle
  11. ^ Hexose Monophosphate Pathway or Pentose Phosphate Pathway and the importance of NADPH (with Animation).

External links

  • Carbohydrate metabolism at the US National Library of Medicine Medical Subject Headings (MeSH)
  • BBC - GCSE Bitesize - Biology | Humans | Glucoregulation
  • Sugar4Kids
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.