Carbon Subsulfide

Carbon subsulfide
Identifiers
CAS number 627-34-9 YesY
PubChem 11062317
ChemSpider 9237470 N
Jmol-3D images Image 1
Properties
Molecular formula C3S2
Molar mass 100.16 g mol−1
Appearance red liquid
Density 1.27 g cm−3
Melting point

-1 °C, 272 K, 30 °F

Boiling point

90 °C, 363 K, 194 °F

Solubility in water insoluble
Related compounds
Related compounds Carbon suboxide
 N (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Carbon subsulfide is the chemical compound with the formula C3S2. This deep red liquid is immiscible with water but soluble in organic solvents. It readily polymerizes at room temperature to form a hard black solid.

Synthesis and structure

C3S2 was discovered by Béla Lengyel,[1] who assigned it an unsymmetrical structure. Later, infrared and Raman spectroscopy showed that the structure is symmetrical with a D∞h point group symmetry,[2] i.e. S=C=C=C=S. This compound is analogous to carbon suboxide whose structure is O=C=C=C=O.

Lengyel first synthesized this compound by passing carbon disulfide (CS2) vapor through an electric arc with carbon electrodes. This treatment produced a black solution that after filtration and evaporation gave a cherry-red liquid. He determined the molecular mass by cryoscopy. Later preparations of C3S2 include thermolysis of a stream of CS2 in a quartz tube heated to 900 to 1100 °C as well as flash vacuum pyrolysis (FVP) of 1,2-dithiole-3-thiones.[3]

Reactions and occurrence

Among its few known reactions, C3S2 reacts with bromine to form the cyclic disulfide.[4]

C3S2 polymerizes under applied pressure to give a black semi-conducting solid. A similar pressure-induced polymerization of CS2 also gives a black semiconducting polymer.

In addition, reactions of C3S2 can yield highly condensed sulfur-containing compounds, e.g. the reaction of C3S2 with 2-aminopyridine.

Using microwave spectroscopy, small CnS2 clusters have been detected in interstellar medium.[5] The rotational transitions of these molecular carbon sulfides matched with the corresponding molecules.

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.