World Library  
Flag as Inappropriate
Email this Article

Centrohelid

Article Id: WHEBN0000062386
Reproduction Date:

Title: Centrohelid  
Author: World Heritage Encyclopedia
Language: English
Subject: Hacrobia, Haptophyte, Cryptomonad, Pompholyxophrys, Holomycota
Collection: Amoeboids, Hacrobia
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Centrohelid

Centrohelids
Raphidiophrys contractilis
Scientific classification
Domain: Eukaryota
(unranked): Hacrobia
Class: Centrohelida
Kühn 1926
Families[1]

Raphidiophryidae
Acanthocystidae
Marophryidae
Oxnerellidae
Choanocystidae
Heterophryidae
Pterocystidae

The centrohelids or centroheliozoa are a large group of heliozoan protists.[2] They include both mobile and sessile forms, found in freshwater and marine environments, especially at some depth.

Contents

  • Characteristics 1
  • Classification 2
  • References 3
  • Further reading 4

Characteristics

Individuals are unicellular and spherical, usually around 30–80 μm in diameter, and covered with long radial axopods, narrow cellular projections that capture food and allow mobile forms to move about.

A few genera have no cell covering, but most have a gelatinous coat holding scales and spines, produced in special deposition vesicles. These may be organic or siliceous and come in various shapes and sizes. For instance, in Raphidiophrys the coat extends along the bases of the axopods, covering them with curved spicules that give them a pine-treeish look, and in Raphidiocystis there are both short cup-shaped spicules and long tubular spicules that are only a little shorter than the axopods. Some other common genera include Heterophrys, Actinocystis, and Oxnerella.

The axopods of centrohelids are supported by microtubules in a triangular-hexagonal array, which arise from a tripartite granule called the centroplast at the center of the cell. Axopods with a similar array occur in gymnosphaerids, which have traditionally been considered centrohelids (though sometimes in a separate order from the others). This was questioned when it was found they have mitochondria with tubular cristae, as do other heliozoa, while in centrohelids the cristae are flat. Although this is no longer considered a very reliable character, on balance gymnosphaerids seem to be a separate group.

Classification

The evolutionary position of the centrohelids is not clear. Structural comparisons with other groups are difficult, in part because no flagella occur among centrohelids, and genetic studies have been more or less inconclusive. Cavalier-Smith has suggested they may be related to the Rhizaria,[3] but for the most part they are left with uncertain relations to other groups. A 2009 paper suggests that they may be related to the cryptophytes and haptophytes (see Cryptomonads-haptophytes assemblage).[4] They are currently classified as Hacrobia, under the Plants+HC clade, although some research studies have found evidence against the monophyly of this group.[5] Centrohelids are currently divided into two orders with contrasting scale morphology and ultrastructure: Pterocystida and Acanthocystida.[1]

References

  1. ^ a b Cavalier-Smith, Thomas; Chao, Ema E. (2012). "Oxnerella micra sp. n. (Oxnerellidae fam. n.), a Tiny Naked Centrohelid, and the Diversity and Evolution of Heliozoa". Protist 163 (4): 574–601.  
  2. ^ Nikolaev SI, Berney C, Fahrni JF et al. (May 2004). "The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes". Proc. Natl. Acad. Sci. U.S.A. 101 (21): 8066–8071.  
  3. ^ Cavalier-Smith T, Chao EE (April 2003). "Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss". J. Mol. Evol. 56 (4): 387–396.  
  4. ^ Burki, F; Inagaki, Y; Bråte, J; Archibald, J.; Keeling, P.; Cavalier-Smith, T; Sakaguchi, M; Hashimoto, T; Horak, A; Kumar, S;  
  5. ^ Zhao, Sen; Burki, Fabien; Bråte, Jon; Keeling, Patrick J.; Klaveness, Dag; Shalchian-Tabrizi, Kamran (2012). "Collodictyon—An Ancient Lineage in the Tree of Eukaryotes". Molecular Biology and Evolution 29 (6): 1557–68.  

Further reading

  • Patterson DJ (October 1999). "The Diversity of Eukaryotes". Am. Nat. 154 (S4): S96–S124.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.