World Library  
Flag as Inappropriate
Email this Article

Centromere

Article Id: WHEBN0000007284
Reproduction Date:

Title: Centromere  
Author: World Heritage Encyclopedia
Language: English
Subject: Chromosome, Meiosis, Centromere protein E, Heterochromatin, Inverted repeat
Collection: Chromosomes
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Centromere

In this diagram of a duplicated chromosome, (2) identifies the centromere—the region that joins the two sister chromatids, or each half of the chromosome. In prophase of mitosis, specialized regions on centromeres called kinetochores attach chromosomes to spindle fibers.

The centromere is the part of a chromosome that links sister chromatids. During mitosis, spindle fibers attach to the centromere via the kinetochore.[1] Centromeres were first defined as genetic loci that direct the behavior of chromosomes.

Their physical role is to act as the site of assembly of the kinetochore - a highly complex multiprotein structure that is responsible for the actual events of chromosome segregation - e.g. binding microtubules and signalling to the cell cycle machinery when all chromosomes have adopted correct attachments to the spindle, so that it is safe for cell division to proceed to completion (i.e. for cells to enter anaphase).[2]

There are broadly speaking two types of centromeres. "Point centromeres" bind to specific proteins that recognise particular DNA sequences with high efficiency.[3] Any piece of DNA with the point centromere DNA sequence on it will typically form a centromere if present in the appropriate species. The best characterised point centromeres are those of the budding yeast, Schizosaccharomyces pombe to humans, have regional centromeres.

Regarding mitotic chromosome structure, centromeres represent a constricted region of the chromosome (often referred to as the primary constriction) where two identical sister chromatids are most closely in contact. When cells enter mitosis, the sister chromatids (which represent the two copies of each chromosomal DNA molecule resulting from DNA replication earlier in the cell cycle and packaged by histones and other proteins into chromatin) are linked all along their length by the action of the cohesin complex. It is now believed that this complex is mostly released from chromosome arms during prophase, so that by the time the chromosomes line up at the mid-plane of the mitotic spindle (also known as the metaphase plate), the last place where they are linked with one another is in the chromatin in and around the centromere.[4]

Contents

  • Positions 1
    • Metacentric 1.1
    • Submetacentric 1.2
    • Acrocentric 1.3
    • Telocentric 1.4
    • Subtelocentric 1.5
    • Holocentric 1.6
    • Human Chromosomes 1.7
  • Sequence 2
  • Inheritance 3
  • Structure 4
  • Centromeric aberrations 5
  • See also 6
  • References 7
    • Further reading 7.1

Positions

Each chromosome has two arms, labeled p (the shorter of the two) and q (the longer). Many remember that the short arm 'p' is named for the French word "petit" meaning 'small', although this explanation was shown to be apocryphal. [5] They can be connected in either metacentric, submetacentric, acrocentric or telocentric manner.

Metacentric

These are X-shaped chromosomes, with the centromere in the middle so that the two arms of the chromosomes are almost equal.

A chromosome is metacentric if its two arms are roughly equal in length. In a normal human karyotype, two chromosomes are considered metacentric: chromosomes 1 and 3. In some cases, a metacentric chromosome is formed by balanced translocation: the fusion of two acrocentric chromosomes to form one metacentric chromosome.[6]

Submetacentric

If arms' lengths are unequal, the chromosome is said to be submetacentric.[7]

Acrocentric

If the p (short) arm is so short that it is hard to observe, but still present, then the chromosome is acrocentric (the "acro-" in acrocentric refers to the Greek word for "peak"). The human genome includes five acrocentric chromosomes: 13, 14, 15, 21, 22.[7]

In an acrocentric chromosome the p arm contains genetic material including repeated sequences such as nucleolar organizing regions, and can be translocated without significant harm, as in a balanced Robertsonian translocation. The domestic horse genome includes one metacentric chromosome that is homologous to two acrocentric chromosomes in the conspecific but undomesticated Przewalski's horse.[8] This may reflect either fixation of a balanced Robertsonian translocation in domestic horses or, conversely, fixation of the fission of one metacentric chromosome into two acrocentric chromosomes in Przewalski's horses. A similar situation exists between the human and great ape genomes; in this case, because more species are extant, it is apparent that the evolutionary sequence is a reduction of two acrocentric chromosomes in the great apes to one metacentric chromosome in humans (see Karyotype#Aneuploidy).[7]

Telocentric

A telocentric chromosome's centromere is located at the terminal end of the chromosome. Telomeres may extend from both ends of the chromosome. For example, the standard house mouse karyotype has only telocentric chromosomes.[9][10] Humans do not possess telocentric chromosomes.

Subtelocentric

If the chromosome's centromere is located closer to its end than to its center, it may be described as subtelocentric.

Holocentric

With holocentric chromosomes, the entire length of the chromosome acts as the centromere. Examples of this type of centromere can be found scattered throughout the plant and animal kingdoms,[11] with the most well known example being the nematode Caenorhabditis elegans.

Human Chromosomes

Chromosome Centromere position (Mbp) Chromosome Size (Mbp)
1 125.0 metacentric 247
2 93.3 243
3 91.0 metacentric
4 50.4
5 48.4
6 61.0
7 59.9
8 45.6
9 49.0
10 40.2
11 53.7
12 35.8
13 17.9 acrocentric 114
14 17.6 acrocentric
15 19.0 acrocentric
16 36.6
17 24.0
18 17.2
19 26.5
20 27.5
21 13.2 acrocentric
22 14.7 acrocentric
X 60.6
Y 12.5

Sequence

There are two types of centromeres.[12] In regional centromeres, DNA sequences contribute to but do not define function. Regional centromeres contain large amounts of DNA and are often packaged into heterochromatin. In most eukaryotes, the centromere's DNA sequence consists of large arrays of repetitive DNA (e.g. satellite DNA) where the sequence within individual repeat elements is similar but not identical. In humans, the primary centromeric repeat unit is called α-satellite (or alphoid), although a number of other sequence types are found in this region.[13]

Point centromeres are smaller and more compact. DNA sequences are both necessary and sufficient to specify centromere identity and function in organisms with point centromeres. In budding yeasts, the centromere region is relatively small (about 125 bp DNA) and contains two highly conserved DNA sequences that serve as binding sites for essential kinetochore proteins.[13]

Inheritance

Since centromeric DNA sequence is not the key determinant of centromeric identity in metazoans, it is thought that epigenetic inheritance plays a major role in specifying the centromere.[14] The daughter chromosomes will assemble centromeres in the same place as the parent chromosome, independent of sequence. It has been proposed that histone H3 variant CENP-A (Centromere Protein A) is the epigenetic mark of the centromere.[15] The question arises whether there must be still some original way in which the centromere is specified, even if it is subsequently propagated epigenetically. If the centromere is inherited epigenetically from one generation to the next, the problem is pushed back to the origin of the first metazoans.

Structure

The centromeric DNA is normally in a heterochromatin state, which is essential for the recruitment of the cohesin complex that mediates sister chromatid cohesion after DNA replication as well as coordinating sister chromatid separation during anaphase. In this chromatin, the normal histone H3 is replaced with a centromere-specific variant, CENP-A in humans.[16] The presence of CENP-A is believed to be important for the assembly of the kinetochore on the centromere. CENP-C has been shown to localise almost exclusively to these regions of CENP-A associated chromatin. In human cells, the histones are found to be most enriched for H4K20me3 and H3K9me3[17] which are known heterochromatic modifications.

In the yeast Schizosaccharomyces pombe (and probably in other eukaryotes), the formation of centromeric heterochromatin is connected to RNAi.[18] In nematodes such as Caenorhabditis elegans, some plants, and the insect orders Lepidoptera and Hemiptera, chromosomes are "holocentric", indicating that there is not a primary site of microtubule attachments or a primary constriction, and a "diffuse" kinetochore assembles along the entire length of the chromosome.

Centromeric aberrations

In rare cases in humans, neocentromeres can form at new sites on the chromosome. There are currently over 90 known human neocentromeres identified on 20 different chromosomes.[19][20] The formation of a neocentromere must be coupled with the inactivation of the previous centromere, since chromosomes with two functional centromeres (Dicentric chromosome) will result in chromosome breakage during mitosis. In some unusual cases human neocentromeres have been observed to form spontaneously on fragmented chromosomes. Some of these new positions were originally euchromatic and lack alpha satellite DNA altogether.

Centromere proteins are also the autoantigenic target for some anti-nuclear antibodies, such as anti-centromere antibodies.

See also

References

  1. ^ Pollard, T.D. (2007). Cell Biology. Philadelphia: Saunders. pp. 200–203.  
  2. ^ Pollard, TD (2007). Cell Biology. Philadelphia: Saunders. pp. 227–230.  
  3. ^ a b Pluta, A.; A.M. Mackay, A.M. Ainsztein, I.G. Goldberg & W.C. Earnshaw. (1995). "The centromere: Hub of chromosomal activities.". Science 270 (5242): 1591–1594.  
  4. ^ "Sister chromatid cohesion". Genetics Home Reference.  
  5. ^ "p + q = Solved, Being the True Story of How the Chromosome Got Its Name". 
  6. ^ "Chromosomes, Chromosome Anomalies". 
  7. ^ a b c http://www.amazon.com/Thompson-Genetics-Medicine-Sixth-Edition/dp/0721669026
  8. ^ Myka, J.L.; Lear, T.L.; Houck, M.L.; Ryder, O.A.; Bailey, E. (2003). "FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii)". Cytogenetic and Genome Research 102 (1–4): 222–5.  
  9. ^ Silver, Lee M. (1995). "Karyotypes, Chromosomes, and Translocations". Mouse Genetics: Concepts and Applications. Oxford: Oxford University Press. pp. 83–92.  
  10. ^ Chinwalla, Asif T.; Cook, Lisa L.; Delehaunty, Kimberly D.; Fewell, Ginger A.; Fulton, Lucinda A.; Fulton, Robert S.; Graves, Tina A.; Hillier, Ladeana W. et al. (2002). "Initial sequencing and comparative analysis of the mouse genome". Nature 420 (6915): 520–62.  
  11. ^ Dernburg, A. F. (2001). "Here, There, and Everywhere: Kinetochore Function on Holocentric Chromosomes". The Journal of Cell Biology 153 (6): F33–8.  
  12. ^ Pluta, A. F.; MacKay, A. M.; Ainsztein, A. M.; Goldberg, I. G.; Earnshaw, W. C. (1995). "The Centromere: Hub of Chromosomal Activities". Science 270 (5242): 1591–4.  
  13. ^ a b Mehta, G. D.; Agarwal, M.; Ghosh, S. K. (2010). "Centromere Identity: a challenge to be faced". Mol. Genet. Genomics 284 (2): 75–94.  
  14. ^ Dalal, Yamini (2009). "Epigenetic specification of centromeres". Biochemistry and Cell Biology 87 (1): 273–82.  
  15. ^ Bernad, Rafael; Sánchez, Patricia; Losada, Ana (2009). "Epigenetic specification of centromeres by CENP-A". Experimental Cell Research 315 (19): 3233–41.  
  16. ^ Chueh, A. C.; Wong, LH; Wong, N; Choo, KH (2004). "Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere". Human Molecular Genetics 14 (1): 85–93.  
  17. ^ Rosenfeld, Jeffrey A; Wang, Zhibin; Schones, Dustin E; Zhao, Keji; Desalle, Rob; Zhang, Michael Q (2009). "Determination of enriched histone modifications in non-genic portions of the human genome". BMC Genomics 10: 143.  
  18. ^ Volpe, T. A.; Kidner, C; Hall, IM; Teng, G; Grewal, SI; Martienssen, RA (2002). "Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi". Science 297 (5588): 1833–7.  
  19. ^ Marshall, Owen J.; Chueh, Anderly C.; Wong, Lee H.; Choo, K.H. Andy (2008). "Neocentromeres: New Insights into Centromere Structure, Disease Development, and Karyotype Evolution". The American Journal of Human Genetics 82 (2): 261–82.  
  20. ^ Warburton, Peter E. (2004). "Chromosomal dynamics of human neocentromere formation". Chromosome Research 12 (6): 617–26.  

Further reading

  • Mehta, G. D.; Agarwal, M.; Ghosh, S. K. (2010). "Centromere Identity: a challenge to be faced". Mol. Genet. Genomics 284 (2): 75–94.  
  • Lodish, Harvey; Berk, Arnold; Kaiser, Chris A.; Krieger, Monty; Scott, Matthew P.; Bretscher, Anthony; Ploegh, Hiddle; Matsudaira, Paul (2008). Molecular Cell Biology (6th ed.). New York: W.H. Freeman.  
  • Nagaki, Kiyotaka; Cheng, Zhukuan; Ouyang, Shu; Talbert, Paul B; Kim, Mary; Jones, Kristine M; Henikoff, Steven; Buell, C Robin; Jiang, Jiming (2004). "Sequencing of a rice centromere uncovers active genes". Nature Genetics 36 (2): 138–45.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.