 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Chebyshev rational functions

Article Id: WHEBN0006112758
Reproduction Date:

 Title: Chebyshev rational functions Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Chebyshev rational functions

This article is not about the Chebyshev rational functions used in the design of elliptic filters. For those functions, see Elliptic rational functions. Plot of the Chebyshev rational functions for n = 0, 1, 2, 3 and 4 for x between 0.01 and 100.
In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree n is defined as:
R_n(x)\ \stackrel{\mathrm{def}}{=}\ T_n\left(\frac{x-1}{x+1}\right)

where T_n(x) is a Chebyshev polynomial of the first kind.

## Contents

• Properties 1
• Recursion 1.1
• Differential equations 1.2
• Orthogonality 1.3
• Expansion of an arbitrary function 1.4
• Particular values 2
• Partial fraction expansion 3
• References 4

## Properties

Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves.

### Recursion

R_{n+1}(x)=2\,\frac{x-1}{x+1}R_n(x)-R_{n-1}(x)\quad\mathrm{for\,n\ge 1}

### Differential equations

(x+1)^2R_n(x)=\frac{1}{n+1}\frac{d}{dx}\,R_{n+1}(x)-\frac{1}{n-1}\frac{d}{dx}\,R_{n-1}(x) \quad\mathrm{for\,n\ge 2}
(x+1)^2x\frac{d^2}{dx^2}\,R_n(x)+\frac{(3x+1)(x+1)}{2}\frac{d}{dx}\,R_n(x)+n^2R_{n}(x) = 0

### Orthogonality Plot of the absolute value of the seventh order (n = 7) Chebyshev rational function for x between 0.01 and 100. Note that there are n zeroes arranged symmetrically about x = 1 and if x0 is a zero, then 1/x0 is a zero as well. The maximum value between the zeros is unity. These properties hold for all orders.

Defining:

\omega(x) \ \stackrel{\mathrm{def}}{=}\ \frac{1}{(x+1)\sqrt{x}}

The orthogonality of the Chebyshev rational functions may be written:

\int_{0}^\infty R_m(x)\,R_n(x)\,\omega(x)\,dx=\frac{\pi c_n}{2}\delta_{nm}

where c_n equals 2 for n = 0 and c_n equals 1 for n \ge 1 and \delta_{nm} is the Kronecker delta function.

### Expansion of an arbitrary function

For an arbitrary function f(x)\in L_\omega^2 the orthogonality relationship can be used to expand f(x):

f(x)=\sum_{n=0}^\infty F_n R_n(x)

where

F_n=\frac{2}{c_n\pi}\int_{0}^\infty f(x)R_n(x)\omega(x)\,dx.

## Particular values

R_0(x)=1\,
R_1(x)=\frac{x-1}{x+1}\,
R_2(x)=\frac{x^2-6x+1}{(x+1)^2}\,
R_3(x)=\frac{x^3-15x^2+15x-1}{(x+1)^3}\,
R_4(x)=\frac{x^4-28x^3+70x^2-28x+1}{(x+1)^4}\,
R_n(x)=\frac{1}{(x+1)^n}\sum_{m=0}^{n} (-1)^m{2n \choose 2m}x^{n-m}\,

## Partial fraction expansion

R_n(x)=\sum_{m=0}^{n} \frac{(m!)^2}{(2m)!}{n+m-1 \choose m}{n \choose m}\frac{(-4)^m}{(x+1)^m}

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.