World Library  
Flag as Inappropriate
Email this Article

Chronic myelogenous leukemia

Article Id: WHEBN0000559874
Reproduction Date:

Title: Chronic myelogenous leukemia  
Author: World Heritage Encyclopedia
Language: English
Subject: List of contaminated cell lines, Imatinib, Chromosomal translocation, Philadelphia chromosome, Bcr-Abl tyrosine-kinase inhibitor
Collection: Chronic Myeloid Leukemia
Publisher: World Heritage Encyclopedia

Chronic myelogenous leukemia

Chronic myelogenous leukemia
The Philadelphia chromosome as seen by metaphase FISH.
Classification and external resources
Specialty Hematology and oncology
ICD-10 C92.1
ICD-9-CM 205.1
ICD-O M9875/3
DiseasesDB 2659
MedlinePlus 000570
eMedicine med/371
MeSH D015464

Chronic myelogenous (or myeloid or myelocytic) leukemia (CML), also known as chronic granulocytic leukemia (CGL), is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of predominantly myeloid cells in the bone marrow and the accumulation of these cells in the blood. CML is a clonal bone marrow stem cell disorder in which a proliferation of mature granulocytes (neutrophils, eosinophils and basophils) and their precursors is found. It is a type of myeloproliferative disease associated with a characteristic chromosomal translocation called the Philadelphia chromosome. CML is now largely treated with targeted drugs called tyrosine kinase inhibitors (TKIs) which have led to dramatically improved long-term survival rates since the introduction of the first such agent in 2001. These drugs have revolutionized treatment of this disease and allow most patients to have a good quality of life when compared to the former chemotherapy drugs. In Western countries it accounts for 15-20% of all adult leukemias and 14% of leukemias overall (including the pediatric population).[1]


  • Signs and symptoms 1
  • Cause 2
    • Risk factors 2.1
  • Diagnosis 3
  • Pathophysiology 4
  • Classification 5
    • Chronic phase 5.1
    • Accelerated phase 5.2
    • Blast crisis 5.3
  • Treatment 6
    • Chronic phase 6.1
      • Imatinib 6.1.1
      • Dasatinib, nilotinib and radotinib 6.1.2
      • Treatment-resistant CML 6.1.3
    • Vaccination 6.2
  • Prognosis 7
  • Epidemiology 8
    • UK 8.1
    • US 8.2
  • References 9
  • External links 10

Signs and symptoms

The way CML presents depends on the stage of the disease at diagnosis as it has been known to skip stages in some cases.[2]

Most patients (~90%) are diagnosed during the chronic stage which is most often asymptomatic. In these cases it may be diagnosed incidentally with an elevated white blood cell count on a routine laboratory test. It can also present with symptoms indicative of enlarged spleen and liver and the resulting upper quadrant pain this causes. The enlarged spleen may put pressure on the stomach causing a loss of appetite and resulting weight loss. It may also present with mild fever and night sweats due to an elevated basal level of metabolism.[2]

Some (<10%) are diagnosed during the accelerated stage which most often presents bleeding, petechiae and ecchymosis.[2] In these patients fevers are most commonly the result of opportunistic infections.[2]

Some patients are initially diagnosed in the blast phase in which the symptoms are most likely fever, bone pain and an increase in bone marrow fibrosis.[2]


In most cases no obvious cause for CML can be isolated.[3]

Risk factors

It is more common in males than in females (male to female ratio of 1.4:1) and appears more common in the elderly with a median age at diagnosis of 65 years.[3] Exposure to ionising radiation appears to be a risk factor, based on a 50 fold higher incidence of CML in Hiroshima and Nagasaki nuclear bombing survivors.[3] The rate of CML in these individuals seems to peak about 10 years after the exposure.[3]


Peripheral blood (MGG stain): marked leucocytosis with granulocyte left shift
A small, hypolobated megakaryocyte (center of field) in a bone marrow aspirate, typically of chronic myelogenous leukemia.

CML is often suspected on the basis of a complete blood count, which shows increased granulocytes of all types, typically including mature myeloid cells. Basophils and eosinophils are almost universally increased; this feature may help differentiate CML from a leukemoid reaction. A bone marrow biopsy is often performed as part of the evaluation for CML, and CML is diagnosed by cytogenetics that detects the translocation t(9;22)(q34;q11.2) which involves the ABL1 gene in chromosome 9 and the BCR gene in chromosome 22.[4] As a result of this translocation, the chromosome looks smaller than its homologue chromosome, and this appearance is known as the Philadelphia chromosome chromosomal abnormality. Thus, this abnormality can be detected by routine cytogenetics, and the involved genes BCR-ABL1 can be detected by fluorescent in situ hybridization, as well as by PCR.[5]

Controversy exists over so-called Ph-negative CML, or cases of suspected CML in which the Philadelphia chromosome cannot be detected. Many such patients in fact have complex chromosomal abnormalities that mask the (9;22) translocation, or have evidence of the translocation by FISH or RT-PCR in spite of normal routine karyotyping.[6] The small subset of patients without detectable molecular evidence of bcr-abl fusion may be better classified as having an undifferentiated myelodysplastic/myeloproliferative disorder, as their clinical course tends to be different from patients with CML.[7]

CML must be distinguished from a leukemoid reaction, which can have a similar appearance on a blood smear.[5]


CML was the first cancer to be linked to a clear genetic abnormality, the chromosomal translocation known as the Philadelphia chromosome. This chromosomal abnormality is so named because it was first discovered and described in 1960 by two scientists from Philadelphia, Pennsylvania, USA: Peter Nowell of the University of Pennsylvania and David Hungerford of Fox Chase Cancer Center.[8]

Diagram showing the translocation found in the Philadelphia chromosome

In this translocation, parts of two chromosomes (the 9th and 22nd) switch places. As a result, part of the BCR ("breakpoint cluster region") gene from chromosome 22 is fused with the ABL gene on chromosome 9. This abnormal "fusion" gene generates a protein of p210 or sometimes p185 weight (p210 is short for 210 kDa protein, a shorthand used for characterizing proteins based solely on size). Because abl carries a domain that can add phosphate groups to tyrosine residues (a tyrosine kinase), the bcr-abl fusion gene product is also a tyrosine kinase.[9][10]

Diagram showing the cells CML can develop from

The fused BCR-ABL protein interacts with the interleukin 3beta(c) receptor subunit. The BCR-ABL transcript is continuously active and does not require activation by other cellular messaging proteins. In turn, BCR-ABL activates a cascade of proteins that control the cell cycle, speeding up cell division. Moreover, the BCR-ABL protein inhibits DNA repair, causing genomic instability and making the cell more susceptible to developing further genetic abnormalities. The action of the BCR-ABL protein is the pathophysiologic cause of chronic myelogenous leukemia. With improved understanding of the nature of the BCR-ABL protein and its action as a tyrosine kinase, targeted therapies (the first of which was imatinib mesylate) that specifically inhibit the activity of the BCR-ABL protein have been developed. These tyrosine kinase inhibitors can induce complete remissions in CML, confirming the central importance of bcr-abl as the cause of CML.[10]


CML is often divided into three phases based on clinical characteristics and laboratory findings. In the absence of intervention, CML typically begins in the chronic phase, and over the course of several years progresses to an accelerated phase and ultimately to a blast crisis. Blast crisis is the terminal phase of CML and clinically behaves like an acute leukemia. Drug treatment will usually stop this progression if started early. One of the drivers of the progression from chronic phase through acceleration and blast crisis is the acquisition of new chromosomal abnormalities (in addition to the Philadelphia chromosome).[9] Some patients may already be in the accelerated phase or blast crisis by the time they are diagnosed.[5]

Chronic phase

Approximately 85% of patients with CML are in the chronic phase at the time of diagnosis. During this phase, patients are usually asymptomatic or have only mild symptoms of fatigue, left side pain, joint and/or hip pain, or abdominal fullness. The duration of chronic phase is variable and depends on how early the disease was diagnosed as well as the therapies used. In the absence of treatment, the disease progresses to an accelerated phase.[5]

Accelerated phase

Criteria for diagnosing transition into the accelerated phase are somewhat variable; the most widely used criteria are those put forward by investigators at

External links

  1. ^ a b Besa, EC; Buehler, B; Markman, M; Sacher, RA (27 December 2013). Krishnan, K, ed. "Chronic Myelogenous Leukemia". Medscape Reference. WebMD. Retrieved 3 January 2014. 
  2. ^ a b c d e Besa, EC; Buehler, B; Markman, M; Sacher, RA (27 December 2013). Krishnan, K, ed. "Chronic Myelogenous Leukemia Clinical Presentation". Medscape Reference. WebMD. Retrieved 3 January 2014. 
  3. ^ a b c d Provan, D; Gribben, JG (2010). "Chapter 7 Chronic myelogenous leukemia". Molecular Hematology (3rd ed.). Singapore: Wiley-Blackwell. p. 76.  
  4. ^ Rowley JD. Genetics. A story of swaped ends. Science 2013; 340: 1412-1413.
  5. ^ a b c d e Tefferi A (2006). "Classification, diagnosis and management of myeloproliferative disorders in the JAK2V617F era". Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program 2006: 240–5.  
  6. ^ Savage DG, Szydlo RM, Goldman JM (Jan 1997). "Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period". British Journal of Haematology 96 (1): 111–6.  
  7. ^ a b c Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA, Barosi G, Verstovsek S, Birgegard G, Mesa R, Reilly JT, Gisslinger H, Vannucchi AM, Cervantes F, Finazzi G, Hoffman R, Gilliland DG, Bloomfield CD, Vardiman JW (Aug 2007). "Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel". Blood 110 (4): 1092–7.  
  8. ^ Nowell PC (Aug 2007). "Discovery of the Philadelphia chromosome: a personal perspective". The Journal of Clinical Investigation 117 (8): 2033–5.  
  9. ^ a b Faderl S, Talpaz M, Estrov Z, Kantarjian HM (Aug 1999). "Chronic myelogenous leukemia: biology and therapy". Annals of Internal Medicine 131 (3): 207–219.  
  10. ^ a b Hehlmann R, Hochhaus A, Baccarani M (Jul 2007). "Chronic myeloid leukaemia". Lancet 370 (9584): 342–50.  
  11. ^ Kantarjian HM, Dixon D, Keating MJ, Talpaz M, Walters RS, McCredie KB, Freireich EJ (Apr 1988). "Characteristics of accelerated disease in chronic myelogenous leukemia". Cancer 61 (7): 1441–6.  
  12. ^ Sokal JE, Baccarani M, Russo D, Tura S (Jan 1988). "Staging and prognosis in chronic myelogenous leukemia". Seminars in Hematology 25 (1): 49–61.  
  13. ^ Vardiman JW, Harris NL, Brunning RD (Oct 2002). "The World Health Organization (WHO) classification of the myeloid neoplasms". Blood 100 (7): 2292–302.  
  14. ^ Karbasian Esfahani M, Morris EL, Dutcher JP, Wiernik PH (May 2006). "Blastic phase of chronic myelogenous leukemia". Current Treatment Options in Oncology 7 (3): 189–199.  
  15. ^ a b Besa, EC; Buehler, B; Markman, M; Sacher, RA (27 December 2013). Krishnan, K, ed. "Chronic Myelogenous Leukemia Treatment & Management". Medscape Reference. WebMD. Retrieved 4 January 2014. 
  16. ^ Kufe DW; Pollack RE; Weichselbau RR; et al., eds. (2003). "Tyrosine Kinase Inhibitors: Targeting Considerations". Holland-Frei Cancer Medicine ( 
  17. ^ Besa, EC; Buehler, B; Markman, M; Sacher, RA (27 December 2013). Krishnan, K, ed. "Chronic Myelogenous Leukemia". Medscape Reference. WebMD. Retrieved 3 January 2014. 
  18. ^ DeAngelo DJ, Ritz J (Jan 2004). "Imatinib therapy for patients with chronic myelogenous leukemia: are patients living longer?" (PDF). Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 10 (1 Pt 1): 1–3.  
  19. ^ a b Gambacorti-Passerini C, Antolini L, Mahon FX, Guilhot F, Deininger M, Fava C, Nagler A, Della Casa CM, Morra E, Abruzzese E, D'Emilio A, Stagno F, le Coutre P, Hurtado-Monroy R, Santini V, Martino B, Pane F, Piccin A, Giraldo P, Assouline S, Durosinmi MA, Leeksma O, Pogliani EM, Puttini M, Jang E, Reiffers J, Valsecchi MG, Kim DW (Apr 2011). "Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib". Journal of the National Cancer Institute 103 (7): 553–561.  
  20. ^ Jabbour E, Cortes JE, Giles FJ, O'Brien S, Kantarjian HM (Jun 2007). "Current and emerging treatment options in chronic myeloid leukemia". Cancer 109 (11): 2171–2181.  
  21. ^ Kimura S, Ashihara E, Maekawa T (Oct 2006). "New tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia". Current Pharmaceutical Biotechnology 7 (5): 371–379.  
  22. ^ "Homoharringtonine (Omacetaxine Mepesuccinate) in Treating Patients With Chronic Myeloid Leukemia (CML) With the T315I BCR-ABL Gene Mutation". (database record). Retrieved October 27, 2012 
  23. ^ "FDA approves Synribo for chronic myelogenous leukemia" (press release). U.S.  
  24. ^ "FDA approves new orphan drug for chronic myelogenous leukemia" (press re;ease). U.S.  
  25. ^ Shapira T, Pereg D, Lishner M (Sep 2008). "How I treat acute and chronic leukemia in pregnancy". Blood Reviews 22 (5): 247–59.  
  26. ^ Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A, Amabile M, Forconi F, Gozzetti A, Raspadori D, Amadori S, Lauria F (2005). "Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial". Lancet 365 (9460): 657–662.  
  27. ^ Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA (Dec 2006). "Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia". The New England Journal of Medicine 355 (23): 2408–17.  
  28. ^ "Chronic myeloid leukaemia (CML) statistics". Cancer Research UK. Retrieved 28 October 2014. 
  29. ^ "What are the key statistics about chronic myeloid leukemia?". American Cancer Society. Retrieved 6 January 2015. 


The American Cancer Society estimates that in 2014, about 5,980 new cases of chronic myelogenous leukemia were diagnosed, and about 810 people died of the disease. This means that a little over 10% of all newly diagnosed leukemia cases will be chronic myelogenous leukemia. The average risk of a person getting this disease is 1 in 588. The disease is more common in men than women, and more common in whites than African-Americans. The average age at diagnosis is 64 years, and this disease is rarely seen in children.[29]


CML accounts for 8% of all leukaemias in the UK, and around 680 people were diagnosed with the disease in 2011.[28]



A 2011 followup of 832 patients using imatinib who achieved a stable cytogenetic response found an overall survival rate of 95.2% after 8 years, which is similar to the rate in the general population. Less than 1% of patients died because of leukemia progression.[19]

With the use of tyrosine kinase inhibitors, survival rates have improved dramatically. A 2006 followup of 553 patients using imatinib (Gleevic) found an overall survival rate of 89% after five years.[27]

Before the advent of tyrosine kinase inhibitors, the median survival time for CML patients had been about 3–5 years from time of diagnosis.[1]


In 2005, encouraging but mixed results of vaccination were reported with the BCR/abl p210 fusion protein in patients with stable disease, with GM-CSF as an adjuvant.[26]


Due to the high median age of patients with CML it is relatively rare for CML to be seen in pregnant women, despite this, however, chronic myelogenous leukemia can be treated with relative safety at any time during pregnancy with Interferon-alpha hormones.[25]

Independently, ARIAD pharmaceuticals, adapting the chemical structures from first and second-generation TK inhibitors, arrived at a new pan-BCR-ABL inhibitor which showed (for the first time) efficacy against T315I, as well as all other known mutations of the oncoprotein. The drug, Ponatinib, gained FDA approval in December 2012 for treatment of patients with resistant or intolerant CML. Just as with second generation TK inhibitors, early approval is being sought to extend the use of Ponatinib to newly diagnosed CML also.

In 2007, Chemgenex released results of an open-label Phase 2/3 study (CGX-635-CML-202) that investigated the use of a non BCR-ABL targeted agent omacetaxine, administered subcutaneously (under the skin) in patients who had failed with imatinib and exhibited T315I kinase domain mutation.[20][21] This is a study which is ongoing through 2014.[22] In September 2012, the FDA approved omacetaxine for the treatment of CML in the case of resistance to other chemotherapeutic agents.[23][24]

While capable of producing significantly improved responses compared with the action of imatinib, neither dasatinib nor nilotinib could overcome drug resistance caused by one particular mutation found to occur in the structure of BCR-ABL known as the T315I mutation. Two approaches were developed to the treatment of CML as a result.

Treatment-resistant CML

To overcome imatinib resistance and to increase responsiveness to TK inhibitors, three novel agents were later developed. The first, dasatinib, blocks several further oncogenic proteins, in addition to more potent inhibition of the BCR-ABL protein, and was initially approved in 2007 by the US FDA to treat CML in patients who were either resistant to or intolerant of imatinib. A second new TK inhibitor, nilotinib, was also approved by the FDA for the same indication. In 2012, Radotinib joined the class of novel agents in the inhibition of the BCR-ABL protein and was approved in South Korea for patients resistant to or intolerant of imatinib. In 2010, nilotinib and dasatinib were also approved for first-line therapy, making three drugs in this class available for treatment of newly diagnosed CML.

Dasatinib, nilotinib and radotinib

The first of this new class of drugs was imatinib mesylate (marketed as Gleevec or Glivec), approved by the U.S. Food and Drug Administration (FDA) in 2001. Imatinib was found to inhibit the progression of CML in the majority of patients (65–75%) sufficiently to achieve regrowth of their normal bone marrow stem cell population (a cytogenetic response) with stable proportions of maturing white blood cells. Because some leukemic cells (as evaluated by RT-PCR) persist in nearly all patients, the treatment has to be continued indefinitely. Since the advent of imatinib, CML has become the first cancer in which a standard medical treatment may give to the patient a normal life expectancy.[19]


In the past, antimetabolites (e.g., cytarabine, hydroxyurea), alkylating agents, interferon alfa 2b, and steroids were used as treatments of CML in the chronic phase, but since the 2000s have been replaced by Bcr-Abl tyrosine-kinase inhibitors[16] drugs that specifically target BCR-ABL, the constitutively activated tyrosine kinase fusion protein caused by the Philadelphia chromosome translocation. Despite the move to replacing cytotoxic antineoplastics (standard anticancer drugs) with tyrosine kinase inhibitors sometimes hydroxyurea is still used to counteract the high WBCs encountered during treatment with tyrosine kinase inhibitors like imatinib; in these situations it may be the preferred myelosuppressive agent due to its relative lack of leukemogenic effects and hence the relative lack of potential for secondary haematologic malignancies to result from treatment.[17] IRIS, an international study that compared interferon/cytarabine combination and the first of these new drugs imatinib, with long-term follow up, demonstrated the clear superiority of tyrosine-kinase-targeted inhibition over existing treatments.[18]

Chronic phase

The only curative treatment for CML is a bone marrow transplant or an allogeneic stem cell transplant.[15] Other than this there are four major mainstays of treatment in CML: treatment with tyrosine kinase inhibitors, myelosuppressive or leukopheresis therapy (to counteract the leucocytosis during early treatment), splenectomy and interferon alfa-2b treatment.[15]


  • >20% myeloblasts or lymphoblasts in the blood or bone marrow
  • Large clusters of blasts in the bone marrow on biopsy
  • Development of a chloroma (solid focus of leukemia outside the bone marrow)

Blast crisis is the final phase in the evolution of CML, and behaves like an acute leukemia, with rapid progression and short survival.[5] Blast crisis is diagnosed if any of the following are present in a patient with CML:[14]

Blast crisis

The patient is considered to be in the accelerated phase if any of the above are present. The accelerated phase is significant because it signals that the disease is progressing and transformation to blast crisis is imminent. Drug treatment often becomes less effective in the advanced stages.[7]

  • 10–19% myeloblasts in the blood or bone marrow
  • >20% basophils in the blood or bone marrow
  • Platelet count <100,000, unrelated to therapy
  • Platelet count >1,000,000, unresponsive to therapy
  • Cytogenetic evolution with new abnormalities in addition to the Philadelphia chromosome
  • Increasing splenomegaly or white blood cell count, unresponsive to therapy

The WHO criteria are perhaps most widely used, and define the accelerated phase by any of the following: [13][7]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.