World Library  
Flag as Inappropriate
Email this Article

Computer algebra system

Article Id: WHEBN0000054427
Reproduction Date:

Title: Computer algebra system  
Author: World Heritage Encyclopedia
Language: English
Subject: Computer algebra systems, MuPAD, HP Prime, Axiom (computer algebra system), Reduce (computer algebra system)
Collection: Computer Algebra Systems
Publisher: World Heritage Encyclopedia

Computer algebra system

A computer algebra system (CAS) is a software program that allows computation over mathematical expressions in a way which is similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of "computer algebra" or "symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials.

Computer algebra systems may be divided in two classes: the specialized ones and the general purpose ones. The specialized ones are devoted to a specific part of mathematics, such as number theory, group theory, or teaching of elementary mathematics.

General purpose computer algebra systems aim to be useful to a user working in any scientific field that requires manipulation of mathematical expressions. To be useful, a general purpose computer algebra system must include various features such as

The library must cover not only the needs of the users, but also the needs of the simplifier. For example, the computation of polynomial greatest common divisors is systemically used for the simplification of expressions involving fractions.

This large amount of required computer capabilities explains the small number of general purpose computer algebra systems. The main ones are Axiom, Macsyma, Magma, Maple, Mathematica and Sage.


  • Symbolic manipulations 1
  • Additional capabilities 2
  • Types of expressions 3
  • History 4
  • Mathematics used in computer algebra systems 5
  • See also 6
  • References 7
  • External links 8

Symbolic manipulations

The symbolic manipulations supported typically include:

In the above, the word some indicates that the operation cannot always be performed.

Additional capabilities

Many also include:

Some include:

Some computer algebra systems focus on a specific area of application; these are typically developed in academia and are free. They can be inefficient for numeric operations compared to numeric systems.

Types of expressions

The expressions manipulated by the CAS typically include polynomials in multiple variables; standard functions of expressions (sine, exponential, etc.); various special functions (Γ, ζ, erf, Bessel functions, etc.); arbitrary functions of expressions; optimization; derivatives, integrals, simplifications, sums, and products of expressions; truncated series with expressions as coefficients, matrices of expressions, and so on. Numeric domains supported typically include real, integer, complex, interval, rational, and algebraic.


Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence.

A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963.

Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly.

The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained. As of today, the most popular commercial systems are Mathematica[1] and Maple, which are commonly used by research mathematicians, scientists, and engineers. Freely available alternatives include Sage (which can act as a front-end to several other free and nonfree CAS).

In 1987 Hewlett-Packard introduced the first hand held calculator CAS with the HP-28 series, and it was possible, for the first time in a calculator, to arrange algebraic expressions, differentiation, limited symbolic integration, Taylor series construction and a solver for algebraic equations. The Texas Instruments company in 1995 released the TI-92 calculator with a CAS based on the software Derive; the TI-Nspire series replaced Derive in 2007. The TI-89 series, first released in 1998, also contains a CAS.

CAS-equipped calculators are not permitted on the ACT, the PLAN, and in some classrooms[2] though it may be permitted on all of College Board's calculator-permitted tests, including the SAT, some SAT Subject Tests and the AP Calculus, Chemistry, Physics, and Statistics exams.

Mathematics used in computer algebra systems

See also


  1. ^ Interview with Gaston Gonnet, co-creator of Maple, SIAM History of Numerical Analysis and Computing, March 16, 2005
  2. ^ ACT's CAAP Tests: Use of Calculators on the CAAP Mathematics Test

External links

  • Definition and workings of a computer algebra system
  • Curriculum and Assessment in an Age of Computer Algebra Systems - From the Education Resources Information Center Clearinghouse for Science, Mathematics, and Environmental Education, Columbus, Ohio.
  • Richard J. Fateman. "Essays in algebraic simplification". Technical report MIT-LCS-TR-095, 1972. (Of historical interest in showing the direction of research in computer algebra. At the MIT LCS web site: [1])
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.