World Library  
Flag as Inappropriate
Email this Article

Condensation reaction

Article Id: WHEBN0000172825
Reproduction Date:

Title: Condensation reaction  
Author: World Heritage Encyclopedia
Language: English
Subject: Biosynthesis, Pyridine, Disaccharide, Peptide bond, Graphitic carbon nitride
Collection: Chemical Reactions, Condensation Reactions, Organic Reactions
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Condensation reaction

The condensation of two amino acids to form a peptide bond (red) with expulsion of water (blue)

A condensation reaction, is a chemical reaction in which two molecules or moieties (functional groups) combine to form a larger molecule, together with the loss of a small molecule.[1] Possible small molecules lost are water, hydrogen chloride, methanol, or acetic acid but most commonly in a biological reaction it is water.

When two separate molecules react, the condensation is termed intermolecular. A simple example is the condensation of two amino acids to form the peptide bond characteristic of proteins. This reaction example is the opposite of hydrolysis, which splits a chemical entity into two parts through the action of the polar water molecule, which itself splits into hydroxide and hydrogen ions. Hence energy is required.

If the union is between atoms or groups of the same molecule, the reaction is termed intramolecular condensation, and in many cases leads to ring formation. An example is the Dieckmann condensation, in which the two ester groups of a single diester molecule react with each other to lose a small alcohol molecule and form a β-ketoester product.

Dieckmann condensation reaction

Contents

  • Mechanism 1
  • Condensation reactions in polymer chemistry 2
  • Applications 3
  • See also 4
  • References 5

Mechanism

Many condensation reactions follow a nucleophilic acyl substitution or an aldol condensation reaction mechanism. Other condensations, such as the acyloin condensation are triggered by radical or single electron transfer conditions.

Condensation reactions in polymer chemistry

In one type of polymerization reaction, a series of condensation steps take place whereby monomers or monomer chains add to each other to form longer chains. This is termed 'condensation polymerization' or 'step-growth polymerization', and occurs for example in the synthesis of polyesters or nylons. It may be either a homopolymerization of a single monomer A-B with two different end groups that condense or a copolymerization of two co-monomers A-A and B-B. Small molecules are usually liberated in these condensation steps, in contrast to polyaddition reactions with no liberation of small molecules.

In general, condensation polymers form more slowly than addition polymers, often requiring heat. They are generally lower in molecular weight. Monomers are consumed early in the reaction; the terminal functional groups remain active throughout and short chains combine to form longer chains. A high conversion rate is required to achieve high molecular weights as per Carothers' equation.

Bifunctional monomers lead to linear chains (and therefore thermoplastic polymers), but, when the monomer functionality exceeds two, the product is a branched chain that may yield a thermoset polymer.

Applications

This type of reaction is used as a basis for the making of many important polymers, for example: nylon, polyester, and other condensation polymers and various epoxies. It is also the basis for the laboratory formation of silicates and polyphosphates. The reactions that form acid anhydrides from their constituent acids are typically condensation reactions.

Many biological transformations are condensation reactions. Polypeptide synthesis, polyketide synthesis, terpene syntheses, phosphorylation, and glycosylations are a few examples of this reaction.

A large number of such reactions are used in synthetic organic chemistry. Other examples include:

See named reactions

See also

References

  1. ^ a b IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (1994) "Condensation Reaction".
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.