World Library  
Flag as Inappropriate
Email this Article

Core electron

Article Id: WHEBN0005129473
Reproduction Date:

Title: Core electron  
Author: World Heritage Encyclopedia
Language: English
Subject: Pseudopotential, Auger effect, X-ray absorption spectroscopy, Atomic, molecular, and optical physics, Car–Parrinello molecular dynamics
Publisher: World Heritage Encyclopedia

Core electron

Core electrons are the electrons in an atom that are not valence electrons and therefore do not participate in bonding. An example: the carbon atom has a total of 6 electrons, 4 of them being valence electrons. So the remaining 2 electrons must be core electrons.

They are so tightly bound to the nucleus as to be negligibly perturbed by the environment of the atom when in the solid state. Therefore, on the contrary of the valence electrons, the core electrons usually play a secondary role on chemical bonding and reactions and their main role is to screen the positive charge of the atomic nucleus. In transition metals, however, the distinction between core and valence electrons is more subtle and it could be very important to consider the electrons in the highest d-shells as valence rather than core electrons.

Electron transition

A core electron can be removed from its core-level upon absorption of electromagnetic radiation (X-ray) and excited to an empty outer shell or emitted as photoelectron (photoelectric effect). The resulting atom with one of its core-level (a so-called core-hole) empty is in a metastable state and decays within 10−15 s by x-ray fluorescence or by the Auger effect.

By detecting the emitted photoelectrons (photoemission spectroscopy), the X-ray photons (XAS and fluorescence spectroscopy) or the Auger electrons (Auger electron spectroscopy) useful information on the electronic and the local lattice structures of a material can be obtained.

The atoms of such techniques results from the fact that since every atom except hydrogen has core-level electrons with well-defined binding energies, it is possible to select the element to probe by tuning the x-ray energy to the appropriate absorption edge. For the same reason the spectra of the radiation emitted (electrons or photons) can be used to determine the elemental composition of a material.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.