World Library  
Flag as Inappropriate
Email this Article

Cryptococcus neoformans

Article Id: WHEBN0000562589
Reproduction Date:

Title: Cryptococcus neoformans  
Author: World Heritage Encyclopedia
Language: English
Subject: Arturo Casadevall, Basidiomycota, Flucytosine, List of infectious diseases, List of MeSH codes (B05)
Collection: Bird Diseases, Fungi with Sequenced Genomes, Tremellomycetes, Yeasts
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cryptococcus neoformans

Cryptococcus neoformans
Cryptococcus neoformans
Scientific classification
Kingdom: Fungi
Phylum: Basidiomycota
Class: Tremellomycetes
Order: Tremellales
Family: Tremellaceae
Genus: Cryptococcus
Species: Cryptococcus neoformans
Binomial name
Cryptococcus neoformans
(San Felice) Vuill.

Cryptococcus neoformans is an encapsulated yeast that can live in both plants and animals. Its teleomorph is Filobasidiella neoformans, a filamentous fungus belonging to the class (biology) Tremellomycetes. It is often found in bird excrement.

Contents

  • Classification 1
  • Characteristics 2
  • Pathology 3
  • Treatment 4
  • References 5
  • External links 6

Classification

Cryptococcus neoformans is composed of two varieties (v.): C. neoformans v. neoformans and C. n. v. grubii. A third variety, C. n. v. gattii, is now considered a distinct species, Cryptococcus gattii. C. n. v. grubii and C. n. v. neoformans have a worldwide distribution and are often found in soil contaminated by bird excrement. The genome sequence of C. neoformans v. neoformans was published in 2005.[1] Recent studies suggest colonies of C. neoformans and related fungi growing on the ruins of the melted down reactor of the Chernobyl nuclear power plant may be able to use the energy of radiation (primary beta radiation) for "radiotrophic" growth.[2]

Characteristics

C. neoformans stained by Gram stain

C. neoformans grows as a yeast (unicellular) and replicates by budding. It makes hyphae during mating, and eventually creates basidiospores at the end of the hyphae before producing spores. Under host-relevant conditions, including low glucose, serum, 5% carbon dioxide, and low iron, among others, the cells produce a characteristic polysaccharide capsule.[3] The recognition of C. neoformans in Gram-stained smears of purulent exudates may be hampered by the presence of the large gelatinous capsule which apparently prevents definitive staining of the yeast-like cells. In such stained preparations, it may appear either as round cells with Gram-positive granular inclusions impressed upon a pale lavender cytoplasmic background or as Gram-negative lipoid bodies.[4] When grown as a yeast, C. neoformans has a prominent capsule composed mostly of polysaccharides. Under the microscope, the India ink stain is used for easy visualization of the capsule in cerebral spinal fluid.[5] The particles of ink pigment do not enter the capsule that surrounds the spherical yeast cell, resulting in a zone of clearance or "halo" around the cells. This allows for quick and easy identification of C. neoformans. Unusual morphological forms are rarely seen.[6] For identification in tissue, mucicarmine stain provides specific staining of polysaccharide cell wall in C. neoformans. Cryptococcal antigen from cerebrospinal fluid is thought to be the best test for diagnosis of cryptococcal meningitis in terms of sensitivity, though it might be unreliable in HIV-positive patients.[7]

Pathology

Infection with C. neoformans is termed cryptococcosis. Most infections with C. neoformans occur in the lungs.[8] However, fungal meningitis and encephalitis, especially as a secondary infection for AIDS patients, are often caused by C. neoformans, making it a particularly dangerous fungus. Infections with this fungus are rare in those with fully functioning immune systems.[9] So, C. neoformans is sometimes referred to as an opportunistic fungus.[9] It is a facultative intracellular pathogen[10] that can utilize host phagocytes to spread within the body.[11][12] Cryptococcus neoformans was the first intracellular pathogen for which the non-lytic escape process termed vomocytosis was observed.[13][14] It has been speculated that this ability to manipulate host cells results from environmental selective pressure by amoebae, a hypothesis first proposed by Arturo Casadevall under the term "accidental virulence".[15]

In human infection, C. neoformans is spread by inhalation of aerosolized basidiospores, and can disseminate to the central nervous system, where it can cause meningoencephalitis.[16] In the lungs, C. neoformans cells are phagocytosed by alveolar macrophages.[17] Macrophages produce oxidative and nitrosative agents, creating a hostile environment, to kill invading pathogens.[18] However, some C. neoformans cells can survive intracellularly in macrophages.[17] Intracellular survival appears to be the basis for latency, disseminated disease, and resistance to eradication by antifungal agents. One mechanism by which C. neoformans survives the hostile intracellular environment of the macrophage involves upregulation of expression of genes involved in responses to oxidative stress.[17]

Traversal of the blood–brain barrier by C. neoformans plays a key role in meningitis pathogenesis.[19] However, precise mechanisms by which it passes the blood-brain barrier are still unknown; one recent study in rats suggested an important role of secreted serine proteases.[20] The metalloprotease Mpr1 has been demonstrated to be critical in blood-brain barrier penetration.[21]

Meiosis (sexual reproduction), another possible survival factor for intracellular C. neoformans

The vast majority of environmental and clinical isolates of C. neoformans are mating type a. Filaments of mating type a have haploid nuclei ordinarily, but these can undergo a process of diploidization (perhaps by endoduplication or stimulated nuclear fusion) to form diploid cells termed blastospores. The diploid nuclei of blastospores are able to undergo meiosis, including recombination, to form haploid basidiospores that can then be dispersed.[22] This process is referred to as monokaryotic fruiting. Required for this process is a gene designated dmc1, a conserved homologue of genes recA in bacteria, and rad51 in eukaryotes (see articles recA and rad51). Dmc1 mediates homologous chromosome pairing during meiosis and repair of double-strand breaks in DNA.[23] One benefit of meiosis in C. neoformans could be to promote DNA repair in the DNA-damaging environment caused by the oxidative and nitrosative agents produced in macrophages.[22] Thus, C. neoformans can undergo a meiotic process, monokaryotic fruiting, that may promote recombinational repair in the oxidative, DNA-damaging environment of the host macrophage, and this may contribute to its virulence.

Treatment

C. neoformans seen in the lung of a patient with AIDS: The inner capsule of the organism stains red in this photomicrograph.

Cryptococcosis that does not affect the central nervous system can be treated with fluconazole alone.

Cryptococcal meningitis should be treated for two weeks with intrathecal amphotericin B 0.7–1.0 mg/kg/day and oral flucytosine 100 mg/kg/day (or intravenous flucytosine 75 mg/kg/day if the patient is unable to swallow). This should then be followed by oral fluconazole 400–800 mg daily for ten weeks[24] and then 200 mg daily for at least one year and until the patient's CD4 count is above 200 cells/mcl.[25][26] Flucytosine is a generic, off-patent medicine. However, a market failure exists, with a two-week cost of flucytosine therapy being about $10,000. As a result, flucytosine is currently universally unavailable in low- and middle-income countries. In 1970, flucytosine was available in Africa.[27]

Intravenous ambisome 4 (mg/kg)/day may be used but is not superior; its main use is in patients who do not tolerate amphotericin B. The dose of 200 mg/kg/day for flucytosine is not more effective, is associated with more side effects and should not be used.

In Africa, oral fluconazole at a rate of 200 mg daily is often used. However, this does not result in cure, because it merely suppresses the fungus and does not kill it; viable fungus can continue to be grown from cerebrospinal fluid of patients not having taken fluconazole for many months. An increased dose of 400 mg daily does not improve outcomes,[28] but prospective studies from Uganda and Malawi reported that higher doses of 1200 mg per day have more fungicidal activity.[29] The outcomes with fluconazole monotherapy have 30% worse survival than amphotericin-based therapies, in a recent systematic review.[30]

References

  1. ^ Loftus BJ; et al. (2005). "The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans". Science 307 (5713): 1321–24.  
  2. ^ Dadachova E; et al. (2007). Rutherford, Julian, ed. "Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi". PLoS ONE 2 (5): e457.  
  3. ^ [2]
  4. ^ Bottone, E J. "Cryptococcus neoformans: pitfalls in diagnosis through evaluation of gram-stained smears of purulent exudates.". National Center for Biotechnology Information. Journal of Clinical Microbiology. Retrieved 2014-11-19. 
  5. ^ Zerpa, R; Huicho, L; Guillén, A (September 1996). "Modified India ink preparation for Cryptococcus neoformans in cerebrospinal fluid specimens." (PDF). Journal of clinical microbiology 34 (9): 2290–1.  
  6. ^ Shashikala; Kanungo, R; Srinivasan, S; Mathew, R; Kannan, M (Jul–Sep 2004). "Unusual morphological forms of Cryptococcus neoformans in cerebrospinal fluid.". Indian journal of medical microbiology 22 (3): 188–90.  
  7. ^ Antinori, Spinello; Radice, Anna; Galimberti, Laura; Magni, Carlo; Fasan, Marco; Parravicini, Carlo (November 2005). "The role of cryptococcal antigen assay in diagnosis and monitoring of cryptococcal meningitis.". Journal of clinical microbiology 43 (11): 5828–9.  
  8. ^ Tripathi K, Mor V, Bairwa NK, Del Poeta M, Mohanty BK. (2012)."Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice."
  9. ^ a b What Makes Cryptococcus neoformans a Pathogen?, Kent L. Buchanan and Juneann W. Murphy University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
  10. ^ Alvarez, M.; Burns, T.; Luo, Y.; Pirofski, L. A.; Casadevall, A. (2009). "The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes". BMC Microbiology 9: 51.  
  11. ^ Charlier, C; Nielsen, K; Daou, S; Brigitte, M; Chretien, F; Dromer, F (January 2009). "Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans.". Infection and immunity 77 (1): 120–7.  
  12. ^ Sabiiti, W; Robertson, E; Beale, MA; Johnston, SA; Brouwer, AE; Loyse, A; Jarvis, JN; Gilbert, AS; Fisher, MC; Harrison, TS; May, RC; Bicanic, T (May 2014). "Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis.". The Journal of clinical investigation 124 (5): 2000–8.  
  13. ^ Alvarez, M; Casadevall, A (7 November 2006). "Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages.". Current biology : CB 16 (21): 2161–5.  
  14. ^ Ma, H; Croudace, JE; Lammas, DA; May, RC (7 November 2006). "Expulsion of live pathogenic yeast by macrophages.". Current biology : CB 16 (21): 2156–60.  
  15. ^ Casadevall, A (2012). "Amoeba provide insight into the origin of virulence in pathogenic fungi.". Advances in experimental medicine and biology 710: 1–10.  
  16. ^ Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J (2009). Spores as infectious propagules of Cryptococcus neoformans" Infect Immun 77(10) 4345-55. doi: 10.1128/IAI.00542-09. PMID 19620339
  17. ^ a b c Fan W, Kraus PR, Boily MJ, Heitman J (2005). Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4(8) 1420-1433. PMID 16087747
  18. ^ Alspaugh JA, Granger DL (1991). Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis" Infect Immun 59(7) 2291-2296. PMID 2050398
  19. ^ Liu TB (2012). "Molecular mechanisms of cryptococcal meningitis.". Virulence 3 (2): 173–81.  
  20. ^ Xu CY (Feb 2014). "permeability of blood-brain barrier is mediated by serine protease during Cryptococcus meningitis.". J Int Med Res 42 (1): 85–92.  
  21. ^ http://medicalxpress.com/news/2014-06-fungal-protein-blood-brain-barrier.html
  22. ^ a b Lin X, Hull CM, Heitman J (2005). Sexual reproduction between partners of the same mating type in Cryptococcus neoformans" Nature 434(7036) 1017-1021. PMID 15846346
  23. ^ Michod RE, Bernstein H, Nedelcu AM Adaptive value of sex in microbial pathogens" Infect Genet Evol 8(3) 267-285. Review. doi:10.1016/j.meegid.2008.01.002 PMID 18295550 http://www.hummingbirds.arizona.edu/Faculty/Michod/Downloads/IGE%20review%20sex.pdf
  24. ^ Saag MS, Graybill RJ, Larsen RA; et al. (2000). "Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America". Clin Infect Dis 30 (4): 710–8.  
  25. ^ Martínez E, García-Viejo MA, Marcos MA; et al. (2000). "Discontinuation of secondary prophylaxis for cryptococcal meningitis in HIV-infected patients responding to highly active antiretroviral therapy". AIDS 14 (16): 2615–26.  
  26. ^ Vibhagool A, Sungkanuparph S, Mootsikapun P; et al. (2003). "Discontinuation of secondary prophylaxis for Cryptococcal meningitis in Human Immunodeficiency Virus-infected patients treated with highly active antiretroviral therapy: a prospective, multicenter, randomized study". Clin Infect Dis 36 (10): 1329–31.  
  27. ^ Mpairwe Y, Patel KM. Cryptococcal meningitis in Mulago Hospital, Kampala. East Afr Med J. 1970;47:445-7. PMID 5479794
  28. ^ CF Schaars, Meintjes GA, Morroni C; et al. (2006). "Outcome of AIDS-associated cryptococcal meningitis initially treated with 200 mg/day or 400 mg/day of fluconazole". BMC Infect Dis 6: 118.  
  29. ^ Longley N, Muzoora C, Taseera K, Mwesigye J, Rwebembera J, Chakera A, Wall E, Andia I, Jaffar S, Harrison TS. Dose response effect of high-dose fluconazole for HIV-associated cryptococcal meningitis in southwestern Uganda. Clin Infect Dis. 2008;47:1556-61. doi: 10.1086/593194.
  30. ^ Rajasingham R, Rolfes MA, Birkenkamp KE, Meya DB, Boulware DR. Cryptococcal meningitis treatment strategies in resource-limited settings: a cost-effectiveness analysis" PLoS Med 2012; 9: e1001316. .doi:10.1371/journal.pmed.1001316 PMID 23055838

External links

  • biology from the Science Creative QuarterlyCryptococcus neoformansA good overview of
  • biology, general information, life cycle image at MetaPathogenCryptococcus neoformans
  • intracellular pathogenesis in human monocytesCryptococcus neoformansThe outcome of
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.