World Library  
Flag as Inappropriate
Email this Article

Cupola (geometry)

Article Id: WHEBN0000689743
Reproduction Date:

Title: Cupola (geometry)  
Author: World Heritage Encyclopedia
Language: English
Subject:
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cupola (geometry)

Pentagonal cupola (example)

Type Set of cupolas
Schläfli symbol {n} ∨ t{n}
Faces n triangles,
n squares1 n-gon,
1 2n-gon
Edges 5n
Vertices 3n
Symmetry group Cnv, [1,n], (*nn), order 2n
Rotation group Cn, [1,n]+, (nn), order n
Dual polyhedron ?
Properties convex

In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

A cupola can be seen as a prism where one of the polygons has been collapsed in half by merging alternate vertices.

A cupola can be given an extended Schläfli symbol {n} ∨ t{n}, representing a regular polygon {n} joined by a parallel of its truncation, t{n} or {2n}.

Cupolae are a subclass of the prismatoids.

Examples

Family of convex cupolae
n 2 3 4 5 6
Name {2} ∨ t{2} {3} ∨ t{3} {4} ∨ t{4} {5} ∨ t{5} {6} ∨ t{6}
Cupola
Digonal cupola

Triangular cupola

Square cupola

Pentagonal cupola

Hexagonal cupola
(Flat)
Related
uniform
polyhedra
Triangular prism
Cubocta-
hedron

Rhombi-
cubocta-
hedron

Rhomb-
icosidodeca-
hedron

Rhombi-
trihexagonal
tiling

Plane "hexagonal cupolae" in the rhombitrihexagonal tiling

The above-mentioned three polyhedra are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square). However, cupolae of higher-degree polygons may be constructed with irregular triangular and rectangular faces.


Coordinates of the vertices

The definition of the cupola does not require the base (or the side opposite the base, which can be called the top) to be a regular polygon, but it is convenient to consider the case where the cupola has its maximal symmetry, Cnv. In that case, the top is a regular n-gon, while the base is either a regular 2n-gon or a 2n-gon which has two different side lengths alternating and the same angles as a regular 2n-gon. It is convenient to fix the coordinate system so that the base lies in the xy-plane, with the top in a plane parallel to the xy-plane. The z-axis is the n-fold axis, and the mirror planes pass through the z-axis and bisect the sides of the base. They also either bisect the sides or the angles of the top polygon, or both. (If n is even, half of the mirror planes bisect the sides of the top polygon and half bisect the angles, while if n is odd, each mirror plane bisects one side and one angle of the top polygon.) The vertices of the base can be designated V1 through V2n, while the vertices of the top polygon can be designated V2n+1 through V3n. With these conventions, the coordinates of the vertices can be written as:

  • V2j−1: (rb cos[2π(j − 1) / n + α], rb sin[2π(j − 1) / n + α], 0)
  • V2j: (rb cos(2πj / n − α), rb sin(2πj / n − α), 0)
  • V2n+j: (rt cos(πj / n), rt sin(πj / n), h)

where j = 1, 2, ..., n.

Since the polygons V1V2V2n+2V2n+1, etc. are rectangles, this puts a constraint on the values of rb, rt, and α. The distance V1V2 is equal to

rb12
= rb{2[1 − cos(2π / n − α)cos α − sin(2π / n − α)sin α]}12
= rb{2[1 − cos(2π / n − 2α)]}12

while the distance V2n+1V2n+2 is equal to

rt12.

These are to be equal, and if this common edge is denoted by s,

rb = s / {2[1 − cos(2π / n − 2α)]}12
rt = s / {2[1 − cos(π / n)]}12

These values are to be inserted into the expressions for the coordinates of the vertices given earlier.

Star-cupolae

Family of star-cupolae
n / d 4 5 7 8
3
{4/3}

{5/3}

{7/3}

{8/3}
5
{7/5}

{8/5}
Family of star-cuploids
n / d 3 5 7
2
Crossed triangular cuploid

Pentagrammic cuploid

Heptagrammic cuploid
4
Crossed pentagonal cuploid

Crossed heptagrammic cuploid

Star cupolae exist for all bases {n/d} where 6/5 < n/d < 6 and d is odd. At the limits the cupolae collapse into plane figures: beyond the limits the triangles and squares can no longer span the distance between the two polygons. When d is even, the bottom base {2n/d} becomes degenerate: we can form a cuploid or semicupola by withdrawing this degenerate face and instead letting the triangles and squares connect to each other here. In particular, the tetrahemihexahedron may be seen as a {3/2}-cuploid. The cupolae are all orientable, while the cuploids are all nonorientable. When n/d > 2 in a cuploid, the triangles and squares do not cover the entire base, and a small membrane is left in the base that simply covers empty space. Hence the {5/2} and {7/2} cuploids pictured above have membranes (not filled in), while the {5/4} and {7/4} cuploids pictured above do not.

The height h of an {n/d}-cupola or cuploid is given by the formula h = \sqrt{1-\frac{1}{4 \sin^{2} (\frac{\pi d}{n})}}. In particular, h = 0 at the limits of n/d = 6 and n/d = 6/5, and h is maximized at n/d = 2 (the triangular prism, where the triangles are upright).[1][2]

In the images above, the star cupolae have been given a consistent colour scheme to aid identifying their faces: the base n/d-gon is red, the base 2n/d is yellow, the squares are blue, and the triangles are green. The cuploids have the base n/d gon red, the squares yellow, and the triangles blue, as the other base has been withdrawn.

Hypercupolae

The hypercupolae or polyhedral cupolae are a family of convex nonuniform polychora (here four-dimensional figures), analogous to the cupolas. Each one's bases are a Platonic solid and its expansion.[3]
Name Tetrahedral cupola Cubic cupola Octahedral cupola Dodecahedral cupola Hexagonal tiling cupola
Schläfli symbol {3,3} ∨ rr{3,3} {4,3} ∨ rr{4,3} {3,4} ∨ rr{3,4} {5,3} ∨ rr{5,3} {6,3} ∨ rr{6,3}
Segmentochora
index[3]
K4.23 K4.71 K4.107 K4.152
circumradius 1 sqrt((3+sqrt(2))/2)
= 1.485634
sqrt(2+sqrt(2))
= 1.847759
3+sqrt(5)
= 5.236068
Image
Cap cells
Vertices 16 32 30 80
Edges 42 84 84 210
Faces 42 24 {3} + 18 {4} 80 32 {3} + 48 {4} 82 40 {3} + 42 {4} 194 80 {3} + 90 {4} + 24 {5}
Cells 16 1 tetrahedron
4 triangular prisms
6 triangular prisms
4 triangular pyramids
1 cuboctahedron
28  1 cube
 6 square prisms
12 triangular prisms
 8 triangular pyramids
 1 rhombicuboctahedron
28  1 octahedron
 8 triangular prisms
12 triangular prisms
 6 square pyramids
1 rhombicuboctahedron
64  1 dodecahedron
12 pentagonal prisms
30 triangular prisms
20 triangular pyramids
 1 rhombicosidodecahedron
1 hexagonal tiling
∞ hexagonal prisms
∞ triangular prisms
∞ triangular pyramids
1 rhombitrihexagonal tiling
Related
uniform
polychora
runcinated 5-cell
runcinated tesseract
runcinated 24-cell
runcinated 120-cell
runcinated hexagonal tiling honeycomb

References

  1. ^ http://www.orchidpalms.com/polyhedra/cupolas/cupola1.html
  2. ^ http://www.orchidpalms.com/polyhedra/cupolas/cupola2.html
  3. ^ a b Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000
  • Johnson, N.W. Convex Polyhedra with Regular Faces. Canad. J. Math. 18, 169–200, 1966.

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.