World Library  
Flag as Inappropriate
Email this Article

Dihedral prime

Article Id: WHEBN0003473539
Reproduction Date:

Title: Dihedral prime  
Author: World Heritage Encyclopedia
Language: English
Subject: Strobogrammatic prime, List of prime numbers, Base-dependent integer sequences, Dihedral, Strobogrammatic number
Publisher: World Heritage Encyclopedia

Dihedral prime

A dihedral prime or dihedral calculator prime is a prime number that still reads like itself or another prime number when read in a seven-segment display, regardless of orientation (normally or upside down), and surface (actual display or reflection on a mirror). The first few decimal dihedral primes are

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (sequence A134996 in OEIS).

The smallest dihedral prime that reads differently with each orientation and surface combination is 120121 which becomes 121021 (upside down), 151051 (mirrored), and 150151 (both upside down and mirrored).

LED-based 7-segment display showing the 16 hex digits.

The digits 0, 1 and 8 remain the same regardless of orientation or surface (the fact that 1 moves from the right to the left of the seven-segment cell when reversed is ignored). 2 and 5 remain the same when viewed upside down, and turn into each other when reflected in a mirror. In the display of a calculator that can handle hexadecimal, 3 would become E reflected, but E being an even digit, the three cannot be used as the first digit because the reflected number will be even. Though 6 and 9 become each other upside down, they are not valid digits when reflected, at least not in any of the numeral systems pocket calculators usually operate in.

Strobogrammatic primes that don't use 6 or 9 are dihedral primes. This includes repunit primes and all other palindromic primes which only contain digits 0, 1 and 8 (in binary, all palindromic primes are dihedral). It appears to be unknown whether there exist infinitely many dihedral primes, but this would follow from the conjecture that there are infinitely many repunit primes.

The palindromic prime 10180054 + 8×(1058567−1)/9×1060744 + 1, discovered in 2009 by Darren Bedwell, is 180055 digits long and may be the largest known dihedral prime as of 2009.[1]


  1. ^ Chris Caldwell, The Top Twenty: Palindrome. Retrieved on 2009-09-16


  • Mike Keith. "Puzzle 39.- The Mirrorable Numbers". The prime puzzles & problems connection. 
  • Eric W. Weisstein. "Dihedral Prime". MathWorld – A Wolfram Web Resource. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.