World Library  
Flag as Inappropriate
Email this Article

Empirical orthogonal functions

Article Id: WHEBN0000429618
Reproduction Date:

Title: Empirical orthogonal functions  
Author: World Heritage Encyclopedia
Language: English
Subject: Atlantic multidecadal oscillation, Principal component analysis, EOF, Arctic dipole anomaly, Spatial data analysis
Collection: Spatial Data Analysis, Time Series Analysis
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Empirical orthogonal functions

In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data. It is the same as performing a principal components analysis on the data, except that the EOF method finds both time series and spatial patterns. The term is also interchangeable with the geographically weighted PCAs in geophysics.[1]

The ith basis function is chosen to be orthogonal to the basis functions from the first through i − 1, and to minimize the residual variance. That is, the basis functions are chosen to be different from each other, and to account for as much variance as possible.

The method of EOF is similar in spirit to harmonic analysis, but harmonic analysis typically uses predetermined orthogonal functions, for example, sine and cosine functions at fixed frequencies. In some cases the two methods may yield essentially the same results.

The basis functions are typically found by computing the eigenvectors of the covariance matrix of the data set. A more advanced technique is to form a kernel out of the data, using a fixed kernel. The basis functions from the eigenvectors of the kernel matrix are thus non-linear in the location of the data (see Mercer's theorem and the kernel trick for more information).

See also

References and notes

  1. ^ Stephenson, David B.; Benestad, Rasmus E. (2000-09-02). "Empirical Orthogonal Function analysis". Environmental statistics for climate researchers. Retrieved 2013-02-28. 

Further reading

  • Bjornsson Halldor and Silvia A. Venegas "A manual for EOF and SVD analyses of climate data", McGill University, CCGCR Report No. 97-1, Montréal, Québec, 52pp., 1997.
  • David B. Stephenson and Rasmus E. Benestad. "Environmental statistics for climate researchers". (See: "Empirical Orthogonal Function analysis")
  • Christopher K. Wikle and Noel Cressie. "A dimension reduced approach to space-time Kalman filtering", Biometrika 86:815-829, 1999.
  • Donald W. Denbo and John S. Allen. "Rotary Empirical Orthogonal Function Analysis of Currents near the Oregon Coast", "J. Phys. Oceanogr.", 14, 35-46, 1984.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.