Enharmonic equivalence

In modern musical notation and tuning, an enharmonic equivalent is a note, interval, or key signature that is equivalent to some other note, interval, or key signature but "spelled", or named differently. Thus, the enharmonic spelling of a written note, interval, or chord is an alternative way to write that note, interval, or chord. For example, in twelve-tone equal temperament (the currently predominant system of musical tuning in Western music), the notes C and D are enharmonic (or enharmonically equivalent) notes. Namely, they are the same key on a keyboard, and thus they are identical in pitch, although they have different names and different role in harmony and chord progressions.

In other words, if two notes have the same pitch but are represented by different letter names and accidentals, they are enharmonic.[1] "Enharmonic intervals are intervals with the same sound that are spelled differently...[resulting], of course, from enharmonic tones."[2]

Prior to this modern meaning, "enharmonic" referred to relations in which there is no exact equivalence in pitch between a sharpened note such as F and a flattened note such as G.[3] as in enharmonic scale.

Some key signatures have an enharmonic equivalent that represents a scale identical in sound but spelled differently. The number of sharps and flats of two enharmonically equivalent keys sum to twelve. For example, the key of B major, with 5 sharps, is enharmonically equivalent to the key of C-flat major with 7 flats, and 5 (sharps) + 7 (flats) = 12. Keys past 7 sharps or flats exist only theoretically and not in practice. The enharmonic keys are six pairs, three major and three minor: B major/C-flat major, G-sharp minor/A-flat minor, F-sharp major/G-flat major, D-sharp minor/E-flat minor, C-sharp major/D-flat major and A-sharp minor/B-flat minor. There are no works composed in keys that require double sharping or double flatting in the key signature, except in jest. In practice, musicians learn and practice 15 major and 15 minor keys, three more than 12 due to the enharmonic spellings.

For example the intervals of a minor sixth on C, on B, and an augmented fifth on C are all enharmonic intervals

Enharmonic equivalence is not to be confused with octave equivalence, nor are enharmonic intervals to be confused with inverted or compound intervals.

Tuning enharmonics

In principle, the modern musical use of the word enharmonic to mean identical tones is correct only in , for instance; in these tunings it is not true that E = F, which is characteristic only of 12 equal temperament.


Main article: Pythagorean tuning

In Pythagorean tuning, all pitches are generated from a series of justly tuned perfect fifths, each with a ratio of 3 to 2. If the first note in the series is an A, the thirteenth note in the series, G, will be higher than the seventh octave (octave = ratio of 1 to 2, seven octaves is 1 to 27 = 128) of the A by a small interval called a Pythagorean comma. This interval is expressed mathematically as:

\frac{\hbox{twelve fifths}}{\hbox{seven octaves}}

=\left(\tfrac32\right)^{12} \!\!\bigg/\, 2^{7} = \frac{3^{12}}{2^{19}} = \frac{531441}{524288} = 1.0136432647705078125 \!


Main article: Meantone temperament

In 1/4 comma meantone, on the other hand, consider G and A. Call middle C's frequency x. Then high C has a frequency of 2x. The 1/4 comma meantone has just (i.e., perfectly tuned) major thirds, which means major thirds with a frequency ratio of exactly 4 to 5.

In order to form a just major third with the C above it, A and high C need to be in the ratio 4 to 5, so A needs to have the frequency

\frac {8x}{5} = 1.6 x. \!

In order to form a just major third above E, however, G needs to form the ratio 5 to 4 with E, which, in turn, needs to form the ratio 5 to 4 with C. Thus the frequency of G is

\left(\frac{5}{4}\right)^2x = \left(\frac{25}{16}\right)x = 1.5625 x

Thus, G and A are not the same note; G is, in fact 41 cents lower in pitch (41% of a semitone, not quite a quarter of a tone). The difference is the interval called the enharmonic diesis, or a frequency ratio of \frac{128}{125}. On a piano tuned in equal temperament, both G and A are played by striking the same key, so both have a frequency 2^\frac{8}{12}x = 2^\frac{2}{3} \approx 1.5874 x. Such small differences in pitch can escape notice when presented as melodic intervals. However, when they are sounded as chords, the difference between meantone intonation and equal-tempered intonation can be quite noticeable, even to untrained ears.

The reason that — despite the fact that in recent Western music, A is exactly the same pitch as G — we label them differently is that in tonal music notes are named for their harmonic function, and retain the names they had in the meantone tuning era. This is called diatonic functionality. One can however label enharmonically equivalent pitches with one and only one name, sometimes called integer notation, often used in serialism and musical set theory and employed by the MIDI interface.

Enharmonic genus

Main article: Enharmonic genus

In ancient Greek music the enharmonic was one of the three Greek genera in music in which the tetrachords are divided (descending) as a ditone plus two microtones. The ditone can be anywhere from 16/13 to 9/7 (3.55 to 4.35 semitones) and the microtones can be anything smaller than 1 semitone. Some examples of enharmonic genera are

1. 1/1 36/35 16/15 4/3
2. 1/1 28/27 16/15 4/3
3. 1/1 64/63 28/27 4/3
4. 1/1 49/48 28/27 4/3
5. 1/1 25/24 13/12 4/3

Tetrachords in Byzantine music

In Byzantine music, enharmonic describes a kind of tetrachord and the echos that contain them. As in the ancient Greek system, enharmonic tetrachords are distinct from diatonic and chromatic. However Byzantine enharmonic tetrachords bear no resemblance to ancient Greek enharmonic tetrachords. Their largest division is between a whole-tone and a tone-and-a-quarter in size, and their smallest is between a quarter-tone and a semitone. These are called "improper diatonic" or "hard diatonic" tetrachords in modern western usage.

See also


Further reading

  • Mathiesen, Thomas J. 2001. "Greece, §I: Ancient". The New Grove Dictionary of Music and Musicians, second edition, edited by Stanley Sadie and John Tyrrell. London: Macmillan Publishers.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.