World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000528080
Reproduction Date:

Title: Fadec  
Author: World Heritage Encyclopedia
Language: English
Subject: Cessna Citation family, Liberty XL2, Continental O-240, Eurocopter EC135, Eurocopter EC225 Super Puma
Collection: Aircraft Instruments, Avionics, Engine Technology
Publisher: World Heritage Encyclopedia


Full authority digital engine (or electronics) control (FADEC) is a system consisting of a digital computer, called an electronic engine controller (EEC) or engine control unit (ECU), and its related accessories that control all aspects of aircraft engine performance. FADECs have been produced for both piston engines and jet engines.[1]

FADEC for piston engine


  • History 1
  • Function 2
    • Safety 2.1
    • Applications 2.2
  • Advantages 3
  • Disadvantages 4
  • Requirements 5
  • Research 6
  • See also 7
  • References 8
  • External links 9


The goal of any engine control system is to allow the engine to perform at maximum efficiency for a given condition. Originally, engine control systems consisted of simple mechanical linkages connected physically to the engine. By moving these levers the pilot or the flight engineer could control fuel flow, power output, and many other engine parameters.

Following mechanical means of engine control came the introduction of analog electronic engine control. Analog electronic control varies an electrical signal to communicate the desired engine settings. The system was an evident improvement over mechanical control but had its drawbacks, including common electronic noise interference and reliability issues. Full authority analogue control was used in the 1960s and introduced as a component of the Rolls-Royce/Snecma Olympus 593 engine of the supersonic transport aircraft Concorde.[2] However, the more critical inlet control was digital on the production aircraft.[3]

In 1968 Rolls-Royce and Elliott Automation in conjunction with the National Gas Turbine Establishment worked on a digital engine control system that completed several hundred hours operation on a Rolls-Royce Olympus Mk 320.[4]

Following analog electronic control, the logical progression was to digital electronic control systems. Later in the 1970s, NASA and Pratt and Whitney experimented with the first experimental FADEC, first flown on an F-111 fitted with a highly modified Pratt & Whitney TF30 left engine. The experiments led to Pratt & Whitney F100 and Pratt & Whitney PW2000 being the first military and civil engines, respectively, fitted with FADEC, and later the Pratt & Whitney PW4000 as the first commercial "dual FADEC" engine. The first FADEC in service was developed for the Harrier II Pegasus engine by Dowty & Smiths Industries Controls.[5]


True full authority digital engine controls have no form of manual override available, placing full authority over the operating parameters of the engine in the hands of the computer. If a total FADEC failure occurs, the engine fails. If the engine is controlled digitally and electronically but allows for manual override, it is considered solely an EEC or ECU. An EEC, though a component of a FADEC, is not by itself FADEC. When standing alone, the EEC makes all of the decisions until the pilot wishes to intervene.

FADEC works by receiving multiple input variables of the current flight condition including air density, throttle lever position, engine temperatures, engine pressures, and many other parameters. The inputs are received by the EEC and analyzed up to 70 times per second. Engine operating parameters such as fuel flow, stator vane position, bleed valve position, and others are computed from this data and applied as appropriate. FADEC also controls engine starting and restarting. The FADEC's basic purpose is to provide optimum engine efficiency for a given flight condition.

FADEC not only provides for efficient engine operation, it also allows the manufacturer to program engine limitations and receive engine health and maintenance reports. For example, to avoid exceeding a certain engine temperature, the FADEC can be programmed to automatically take the necessary measures without pilot intervention.


With the operation of the engines so heavily relying on automation, safety is a great concern. Redundancy is provided in the form of two or more, separate identical digital channels. Each channel may provide all engine functions without restriction. FADEC also monitors a variety of data coming from the engine subsystems and related aircraft systems, providing for fault tolerant engine control.


A typical civilian transport aircraft flight may illustrate the function of a FADEC. The flight crew first enters flight data such as wind conditions, runway length, or cruise altitude, into the flight management system (FMS). The FMS uses this data to calculate power settings for different phases of the flight. At takeoff, the flight crew advances the throttle to a predetermined setting, or opts for an auto-throttle takeoff if available. The FADECs now apply the calculated takeoff thrust setting by sending an electronic signal to the engines; there is no direct linkage to open fuel flow. This procedure can be repeated for any other phase of flight.

In flight, small changes in operation are constantly made to maintain efficiency. Maximum thrust is available for emergency situations if the throttle is advanced to full, but limitations can’t be exceeded; the flight crew has no means of manually overriding the FADEC.


  • Better fuel efficiency
  • Automatic engine protection against out-of-tolerance operations
  • Safer as the multiple channel FADEC computer provides redundancy in case of failure
  • Care-free engine handling, with guaranteed thrust settings
  • Ability to use single engine type for wide thrust requirements by just reprogramming the FADECs
  • Provides semi-automatic engine starting
  • Better systems integration with engine and aircraft systems
  • Can provide engine long-term health monitoring and diagnostics
  • Number of external and internal parameters used in the control processes increases by one order of magnitude
  • Reduces the number of parameters to be monitored by flight crews
  • Due to the high number of parameters monitored, the FADEC makes possible "Fault Tolerant Systems" (where a system can operate within required reliability and safety limitation with certain fault configurations)
  • Can support automatic aircraft and engine emergency responses (e.g. in case of aircraft stall, engines increase thrust automatically).
  • Saves weight


  • Full authority digital engine controls have no form of manual override available, placing full authority over the operating parameters of the engine in the hands of the computer.
    • If a total FADEC failure occurs, the engine fails.
    • Upon total FADEC failure, pilots have no manual controls for engine restart, throttle, or other functions.
    • Single point of failure risk can be mitigated with redundant FADECs (assuming that the failure is a random hardware failure and not the result of a design or manufacturing error, which may cause identical failures in all identical redundant components).
  • High system complexity compared to hydromechanical, analogue or manual control systems
  • High system development and validation effort due to the complexity


  • Engineering processes must be used to design, manufacture, install and maintain the sensors which measure and report flight and engine parameters to the control system itself.
  • Formal systems engineering processes are often used in the design, implementation and testing of the software used in these safety-critical control systems. This requirement led to the development and use of specialized software such as model-based systems engineering (MBSE) tools. The application development toolset SCADE (from Esterel Technologies) (not to be confused with the application category SCADA) is an example of an MBSE tool and has been used as part of the development of FADEC systems.


NASA has analyzed a distributed FADEC architecture rather than the current centralized, specifically for helicopters. Greater flexibility and lower life cycle costs are likely advantages of distribution.

See also


  1. ^ "Chapter 6: Aircraft Systems" (PDF). Pilot's Handbook of Aeronautical Knowledge.  
  2. ^ Pratt, Roger W (2000). FLIGHT CONTROL SYSTEMS Practical Issues In Design and Implementation. Institute of Electrical Engineers. p. 12.  
  3. ^ Owen, Kenneth (2001). Concorde: Story of a Supersonic Pioneer. Science Museum. p. 69.  
  4. ^
  5. ^ Gunston (1990) Avionics: The story and technology of aviation electronics Patrick Stephens Ltd, Wellingborough UK. 254pp, ISBN 1-85260-133-7
  • "Safran Electronics Canada: FADEC and EEC". Retrieved 2010-04-30. 
  • "Hispano-Suiza: Digital Engine Control". Retrieved 2007-03-09. 
  • Moren, Chuck. Interview with student. FADEC. Embry-Riddle Aeronautical University, Daytona Beach. 2007-03-13.
  • Title 14 CFR: Federal Aviation Regulations.  

External links

  • Harrier flies with digitally controlled Pegasus - a 1982 article in Flight International magazine
  • Active-control engines a 1988 Flight International article on FADEC engines
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.