World Library  
Flag as Inappropriate
Email this Article

Ferroelectric capacitor

Article Id: WHEBN0000512435
Reproduction Date:

Title: Ferroelectric capacitor  
Author: World Heritage Encyclopedia
Language: English
Subject: Ferroelectricity, Capacitors, Ceramic materials, Electromagnetism, Electrical and Electronics
Publisher: World Heritage Encyclopedia

Ferroelectric capacitor

Ferroelectric capacitor is a capacitor based on a ferroelectric material. In contrast, traditional capacitors are based on dielectric materials. Ferroelectric devices are used in digital electronics as part of ferroelectric RAM, or in analog electronics as tunable capacitors (varactors).

Schematic of a ferroelectric capacitor

In memory applications, the stored value of a ferroelectric capacitor is read by applying an electric field. The amount of charge needed to flip the memory cell to the opposite state is measured and the previous state of the cell is revealed. This means that the read operation destroys the memory cell state, and has to be followed by a corresponding write operation, in order to write the bit back. This makes it similar to the ferrite core memory. The requirement for a write cycle for each read cycle, together with the high but not infinite write cycle limit, sets a potential problem for some special applications.


  • Theory 1
  • See also 2
  • External links 3
  • References 4


In a short-circuited ferroelectric capacitor with a metal-ferroelectric-metal (MFM) structure, a charge distribution of screening charges forms at the metal-ferroelectric interface so as to screen the electric displacement of the ferroelectric. Due to these screening charges, there is a voltage drop across the ferroelectric capacitor with screening in the electrode layer that can be obtained using the Thomas-Fermi approach as follows:[1]

V = E_f d + E_e\left(2\lambda\right)

Here d is the film thickness, E_f = \frac{V + 8\pi P_s a}{d + \epsilon_f\left(2a\right)} and E_e=\frac{\epsilon_f}{\epsilon_e}E_f - \frac{4\pi}{\epsilon_e}P_s are the electric fields in the film and electrode at the interface, P_s is the spontaneous polarization, a=\frac{\lambda}{\epsilon_e}, and \epsilon_f & \epsilon_e are the dielectric constants of the film and the metal electrode.

With perfect electrodes, \lambda=0 or for thick films, with d \gg a the equation reduces to:

V = E_f d \Rightarrow E_f=\frac{V}{d}

See also

External links

  • FeRAM Tutorial


  1. ^ Dawber; et al. (2003). "Depolarization corrections to the coercive field in thin-film ferroelectrics". J Phys Condens Matter 15: 393. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.