World Library  
Flag as Inappropriate
Email this Article

Filling area conjecture

 

Filling area conjecture

In mathematics, in Riemannian geometry, Mikhail Gromov's filling area conjecture asserts that among all possible fillings of the Riemannian circle of length 2π by a surface with the strongly isometric property, the round hemisphere has the least area. Here the Riemannian circle refers to the unique closed 1-dimensional Riemannian manifold of total 1-volume 2π and Riemannian diameter π.

Contents

  • Explanation 1
  • Relation to Pu's inequality 2
  • See also 3
  • References 4

Explanation

To explain the conjecture, we start with the observation that the equatorial circle of the unit 2-sphere

S^2 \subset \R^3 \,\!

is a Riemannian circle S1 of length 2π and diameter π. More precisely, the Riemannian distance function of S1 is the restriction of the ambient Riemannian distance on the sphere. This property is not satisfied by the standard imbedding of the unit circle in the Euclidean plane, where a pair of opposite points are at distance 2, not π.

We consider all fillings of S1 by a surface, such that the restricted metric defined by the inclusion of the circle as the boundary of the surface is the Riemannian metric of a circle of length 2π. The inclusion of the circle as the boundary is then called a strongly isometric imbedding of the circle. In 1983 Gromov conjectured that the round hemisphere gives the "best" way of filling the circle among all filling surfaces.

Relation to Pu's inequality

An animation of the Roman surface representing RP2 in R3

The case of simply-connected fillings is equivalent to Pu's inequality for the real projective plane RP2. Recently the case of genus-1 fillings was settled affirmatively, as well (see Bangert et al). Namely, it turns out that one can exploit a half-century old formula by J. Hersch from integral geometry. Namely, consider the family of figure-8 loops on a football, with the self-intersection point at the equator (see figure at the beginning of the article). Hersch's formula expresses the area of a metric in the conformal class of the football, as an average of the energies of the figure-8 loops from the family. An application of Hersch's formula to the hyperelliptic quotient of the Riemann surface proves the filling area conjecture in this case.

See also

References

  • Bangert, V.; Croke, C.; Ivanov, S.; Katz, M.: Filling area conjecture and ovalless real hyperelliptic surfaces, Geometric and Functional Analysis (GAFA) 15 (2005), no. 3, 577–597. See arXiv:math.DG/0405583
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.