World Library  
Flag as Inappropriate
Email this Article

Fitch's paradox of knowability

Article Id: WHEBN0001150215
Reproduction Date:

Title: Fitch's paradox of knowability  
Author: World Heritage Encyclopedia
Language: English
Subject: Paradox of nihilism, Paradox of fiction, Buridan's bridge, When a white horse is not a horse, Epistemology
Collection: Epistemology, Paradoxes
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Fitch's paradox of knowability

Fitch's paradox of knowability is one of the fundamental puzzles of epistemic logic. It provides a challenge to the knowability thesis, which states that every truth is, in principle, knowable. The paradox is that this assumption implies the omniscience principle, which asserts that every truth is known. Essentially, Fitch's paradox asserts that the existence of an unknown truth is unknowable. So if all truths were knowable, it would follow that all truths are in fact known.

The paradox is of concern for verificationist or anti-realist accounts of truth, for which the knowability thesis is very plausible, but the omniscience principle is very implausible.

The paradox appeared as a minor theorem in a 1963 paper by Frederic Fitch, "A Logical Analysis of Some Value Concepts". Other than the knowability thesis, his proof makes only modest assumptions on the modal nature of knowledge and of possibility. He also generalised the proof to different modalities. It resurfaced in 1979 when W. D. Hart wrote that Fitch's proof was an "unjustly neglected logical gem".

Proof

Suppose p is a sentence which is an unknown truth; that is, the sentence p is true, but it is not known that p is true. In such a case, the sentence "the sentence p is an unknown truth" is true; and, if all truths are knowable, it should be possible to know that "p is an unknown truth". But this isn't possible, because as soon as we know "p is an unknown truth", we know that p is true, rendering p no longer an unknown truth, so the statement "p is an unknown truth" becomes a falsity. Hence, the statement "p is an unknown truth" cannot be both known and true at the same time. Therefore, if all truths are knowable, the set of "all truths" must not include any of the form "something is an unknown truth"; thus there must be no unknown truths, and thus all truths must be known.

This can be formalised with modal logic. K and L will stand for known and possible, respectively. Thus LK means possibly known, in other words, knowable. The modality rules used are:

(A) Kpp – knowledge implies truth.
(B) K(p & q) → (Kp & Kq) – knowing a conjunction implies knowing each conjunct.
(C) pLKp – all truths are knowable.
(D) from ¬p, deduce ¬Lp – if p can be proven false without assumptions, then p is impossible (which is similar to the rule of necessitation: if p can be proven true without assumptions, then p is necessarily true).

The proof proceeds:

1. Suppose K(p & ¬Kp)
2. Kp & K¬Kp from line 1 by rule (B)
3. Kp from line 2 by conjunction elimination
4. K¬Kp from line 2 by conjunction elimination
5. ¬Kp from line 4 by rule (A)
6. ¬K(p & ¬Kp) from lines 3 and 5 by reductio ad absurdum, discharging assumption 1
7. ¬LK(p & ¬Kp) from line 6 by rule (D)
8. Suppose p & ¬Kp
9. LK(p & ¬Kp) from line 8 by rule (C)
10. ¬(p & ¬Kp) from lines 7 and 9 by reductio ad absurdum, discharging assumption 8.
11. pKp from line 10 by a classical tautology

The last line states that if p is true then it is known. Since nothing else about p was assumed, it means that every truth is known.

Generalisations

The proof uses minimal assumptions about the nature of K and L, so other modalities can be substituted for "known". Salerno gives the example of "caused by God": rule (C) becomes that every true fact could have been caused by God, and the conclusion is that every true fact was caused by God. Rule (A) can also be weakened to include modalities which don't imply truth. For instance instead of "known" we could have the doxastic modality "believed by a rational person" (represented by B).

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.