Giant dipole resonance

Giant resonance is a high-frequency collective excitation of atomic nuclei, as a property of many-body quantum systems. In the macroscopic interpretation of such an excitation in terms of an oscillation, the most prominent giant resonance is a collective oscillation of all protons against all neutrons in a nucleus.

1947, G. C. Baildwin and G. S. Klaiber observed the giant dipole resonance (GDR) in photonuclear reactions,[1] in 1972 the giant quadrupole resonance (GQR) was discovered,[2] and in 1977 the giant monopole resonance (GMR) was discovered in medium and heavy nuclei.[3]

Giant dipole resonances may result in a number of de-excitation events, such as nuclear fission, emission of neutrons or gamma rays, or combinations of these.

Giant dipole resonances can be caused by any mechanism that imparts enough energy to the nucleus. Classical causes are irradiation with gamma rays at energies from 7 to 40 MeV, which couple to nuclei and either cause or increase the dipole moment of the nucleus by adding energy that separates charges in the nucleus. The process is the inverse of gamma decay, but the energies involved are typically much larger, and the dipole moments induced are larger than occur in the excited nuclear states that cause the average gamma decay.

High energy electrons of >50 MeV may cause the same phenomenon, by coupling to the nucleus via a "virtual gamma photon," in a nuclear reaction that is the inverse (i.e., reverse) of internal conversion decay.


Further reading

  • M. N. Harakeh, A. van der Woude: Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation, Oxford Studies in Nuclear Physics, Oxford University Press, USA, July 2001, ISBN 978-0-19-851733-7
  • P. F. Bortignon, A. Bracco, R. A. Broglia: Giant Resonances, Contemporary Concepts in Physics, CRC Press, July 1998, ISBN 978-90-5702-570-9

External links

  • Chomaz, Ph.: Collective excitations in nuclei
  • Brink, G. M.: Giant resonances in excited nuclei
  • Giant nuclear resonances,
  • McGraw-Hill Encyclopedia of Science & Technology
  • expand by hand
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.