World Library  
Flag as Inappropriate
Email this Article

Glycogenesis

Article Id: WHEBN0001437991
Reproduction Date:

Title: Glycogenesis  
Author: World Heritage Encyclopedia
Language: English
Subject: Carbohydrate metabolism, Glucose 1-phosphate, Glycogen synthase, Cortisol, Protein kinase A
Collection: Metabolic Pathways
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Glycogenesis

Glycogenesis is the process of glycogen synthesis, in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle, in the liver, and also activated by insulin in response to high glucose levels, for example after a carbohydrate-containing meal.

Contents

  • Steps 1
  • Control and regulations 2
    • Epinephrine (Adrenaline) 2.1
    • Insulin 2.2
    • Calcium ions 2.3
  • See also 3
  • External links 4

Steps

  • Glucose is converted into glucose-6-phosphate by the action of glucokinase or hexokinase.
  • Glucose-6-phosphate is converted into glucose-1-phosphate by the action of phosphoglucomutase, passing through the obligatory intermediate glucose-1,6-bisphosphate.
  • Glucose-1-phosphate is converted into UDP-glucose by the action of the enzyme UDP-glucose phosphorylase. Pyrophosphate is formed, which is later hydrolysed by pyrophosphatase into two phosphate molecules.
  • Glycogenin, a homodimer, has a tyrosine residue on each subunit that serves as the anchor for the reducing end of glycogen. Initially, about eight UDP-glucose molecules are added to each tyrosine residue by glycogenin, forming α(1→4) bonds.
  • Once a chain of eight glucose monomers is formed, glycogen synthase binds to the growing glycogen chain and adds UDP-glucose to the 4-hydroxyl group of the glucosyl residue on the non-reducing end of the glycogen chain, forming more α(1→4) bonds in the process.
  • Branches are made by glycogen branching enzyme (also known as amylo-α(1:4)→α(1:6)transglycosylase), which transfers the end of the chain onto an earlier part via α-1:6 glycosidic bond, forming branches, which further grow by addition of more α-1:4 glycosidic units.

Control and regulations

Glycogenesis responds to hormonal control.

One of the main forms of control is the varied phosphorylation of glycogen synthase and glycogen phosphorylase. This is regulated by enzymes under the control of hormonal activity, which is in turn regulated by many factors. As such, there are many different possible effectors when compared to allosteric systems of regulation.

Epinephrine (Adrenaline)

Glycogen phosphorylase is activated by phosphorylation, whereas glycogen synthase is inhibited.

Glycogen phosphorylase is converted from its less active "b" form to an active "a" form by the enzyme phosphorylase kinase. This latter enzyme is itself activated by protein kinase A and deactivated by phosphoprotein phosphatase-1.

Protein kinase A itself is activated by the hormone adrenaline. Epinephrine binds to a receptor protein that activates adenylate cyclase. The latter enzyme causes the formation of cyclic AMP from ATP; two molecules of cyclic AMP bind to the regulatory subunit of protein kinase A, which activates it allowing the catalytic subunit of protein kinase A to dissociate from the assembly and to phosphorylate other proteins.

Returning to glycogen phosphorylase, the less active "b" form can itself be activated without the conformational change. 5'AMP acts as an allosteric activator, whereas ATP is an inhibitor, as already seen with phosphofructokinase control, helping to change the rate of flux in response to energy demand.

Epinephrine not only activates glycogen phosphorylase but also inhibits glycogen synthase. This amplifies the effect of activating glycogen phosphorylase. This inhibition is achieved by a similar mechanism, as protein kinase A acts to phosphorylate the enzyme, which lowers activity. This is known as co-ordinate reciprocal control. Refer to glycolysis for further information of the regulation of glycogenesis.

Insulin

Insulin has an antagonistic effect to epinephrine signaling via the beta-adrenergic receptor (G-Protein coupled receptor). When insulin binds to its receptor (insulin receptor), it results in the activation (phosphorylation) of Akt which in turn activates Phosphodiesterase (PDE). PDE then will inhibit cyclic AMP (cAMP) action and cause inactivation of PKA which will cause Hormone Sensitive Lipase (HSL) to be dephosphorylated and inactive so that lipolysis and lipogenesis is not occurring simultaneously.

Calcium ions

Calcium ions or cyclic AMP (cAMP) act as secondary messengers. This is an example of negative control. The calcium ions activate phosphorylase kinase. This activates glycogen phosphorylase and inhibits glycogen synthase.

See also

External links

  • The chemical logic of glycogen synthesis
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.