World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000045832
Reproduction Date:

Title: Gyrocompass  
Author: World Heritage Encyclopedia
Language: English
Subject: Elmer Ambrose Sperry, HRG gyrocompass, V-1 flying bomb, Compass, MV Dunedin Star
Collection: 1908 Introductions, Aircraft Instruments, Avionics, German Inventions, Navigational Equipment
Publisher: World Heritage Encyclopedia


Cutaway of an Anschütz gyrocompass
A gyrocompass repeater

A gyrocompass is a type of non-magnetic compass which is based on a fast-spinning disc and rotation of the Earth (or another planetary body if used elsewhere in the universe) to automatically find geographical direction. Although one important component of a gyrocompass is a gyroscope, these are not the same devices; a gyrocompass is built to use the effect of gyroscopic precession, which is a distinctive aspect of the general gyroscopic effect.[1][2] Gyrocompasses are widely used for navigation on ships, because they have two significant advantages over magnetic compasses:[2]


  • Operation 1
  • Mathematical model of a gyrocompass 2
    • First time-dependent rotation 2.1
    • Second and third fixed rotations 2.2
    • Constant translation 2.3
    • Fourth time-dependent rotation 2.4
    • Last time-dependent rotation 2.5
    • Dynamics of the system 2.6
      • Particular case: the poles 2.6.1
      • The general and physically relevant case 2.6.2
  • History 3
  • Errors 4
  • Patents 5
  • See also 6
  • Notes 7
  • References 8
  • Bibliography 9
  • External links 10


A gyroscope, not to be confused with gyrocompass, is a spinning wheel mounted on gimbal so that the wheel's axis is free to orient itself in any way.[2] When it is spun up to speed with its axis pointing in some direction, due to the law of conservation of angular momentum, such a wheel will normally maintain its original orientation to a fixed point in outer space (not to a fixed point on Earth). Since our planet rotates, it appears to a stationary observer on Earth that a gyroscope's axis is completing a full rotation once every 24 hours.[note 1] Such a rotating gyroscope is used for navigation in some cases, for example on aircraft, where it is known as heading indicator, but cannot ordinarily be used for long-term marine navigation. The crucial additional ingredient needed to turn such gyroscope into a gyrocompass, so it would automatically position to true north,[1][2] is some mechanism that results in an application of torque whenever the compass's axis is not pointing north.

One method uses [3] the gyroscope in a gyrocompass is not completely free to reorient itself; if for instance a device connected to the axis is immersed in a viscous fluid, then that fluid will resist reorientation of the axis. This friction force caused by the fluid results in a torque acting on the axis, causing the axis to turn in a direction orthogonal to the torque (that is, to precess) along a line of longitude. Once the axis points toward the celestial pole, it will appear to be stationary and won't experience any more frictional forces. This is because true north is the only direction for which the gyroscope can remain on the surface of the earth and not be required to change. This axis orientation is considered to be a point of minimum potential energy.

Another, more practical, method is to use weights to force the axis of the compass to remain horizontal (perpendicular to the direction of the center of the Earth), but otherwise allow it to rotate freely within the horizontal plane.[1][2] In this case, gravity will apply a torque forcing the compass's axis toward true north. Because the weights will confine the compass's axis to be horizontal with respect to the Earth's surface, the axis can never align with the Earth's axis (except on the Equator) and must realign itself as the Earth rotates. But with respect to the Earth's surface, the compass will appear to be stationary and pointing along the Earth's surface toward the true North Pole.

Since the gyrocompass's north-seeking function depends on the rotation around the axis of the Earth that causes torque-induced gyroscopic precession, it will not orient itself correctly to true north if it is moved very fast in an east to west direction, thus negating the Earth's rotation. However, aircraft commonly use heading indicators or directional gyros, which are not gyrocompasses and do not position themselves to north via precession, but are periodically aligned manually to true north.[4][5]

Mathematical model of a gyrocompass

We will consider here a gyrocompass, as a gyroscope which is free to rotate about one of its symmetry axis, and the whole rotating gyroscope is also free to rotate on the horizontal plane, about the local vertical, the zenith. Therefore there are two independent local rotations. In addition to these rotations we will also consider the rotation of the Earth about its North-South (NS) axis, and we will model the planet as a perfect sphere. We will neglect friction and the rotation of the Earth about the Sun.

In this case a non-rotating observer located at the center of the Earth can be approximated as being an inertial frame. We can set cartesian coordinates \textstyle (X_{1},Y_{1},Z_{1}) for such an observer (that we will name as 1-O), and the barycenter of the gyroscope will be located at a distance R from the center of the Earth.

First time-dependent rotation

Let us consider another (non-inertial) observer (the 2-O) located at the center of the Earth but rotating about the NS-axis by \textstyle\Omega, then we set coordinates attached to the observer as

\left(\begin{array}{c} X_{2}\\ Y_{2}\\ Z_{2} \end{array}\right)=\left(\begin{array}{ccc} \cos\Omega t & \sin\Omega t & 0\\ -\sin\Omega t & \cos\Omega t & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} X_{1}\\ Y_{1}\\ Z_{1} \end{array}\right),

so that the unit \hat{X}_{1} versor (X_{1}=1,Y_{1}=0,Z_{1}=0)^{T} is mapped to the point (X_{2}=\cos\Omega t,Y_{2}=-\sin\Omega t,Z_{2}=0)^{T}. For the 2-O the Earth is not moving so as the barycenter of the gyroscope. The rotation of 2-O, according to 1-O, is performed with angular velocity \vec{\Omega}=(0,0,\Omega)^{T}. We will suppose that the X_{2} axis denotes points with zero longitude.

Second and third fixed rotations

We will now rotate about the \textstyle Z_{2} axis, so that the \textstyle X_{3}-axis will have the longitude of the barycenter. In this case we have

\left(\begin{array}{c} X_{3}\\ Y_{3}\\ Z_{3} \end{array}\right)=\left(\begin{array}{ccc} \cos\Phi & \sin\Phi & 0\\ -\sin\Phi & \cos\Phi & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} X_{2}\\ Y_{2}\\ Z_{2} \end{array}\right).

With the next rotation (about the axis \textstyle Y_{3} of an angle \textstyle \delta, the co-latitude) we will bring the \textstyle Z_{3} axis along the local zenith (\textstyle Z_{4}-axis) of the barycenter. This can be achieved by the following orthogonal matrix (with unit determinant)

\left(\begin{array}{c} X_{4}\\ Y_{4}\\ Z_{4} \end{array}\right)=\left(\begin{array}{ccc} \cos\delta & 0 & -\sin\delta\\ 0 & 1 & 0\\ \sin\delta & 0 & \cos\delta \end{array}\right)\left(\begin{array}{c} X_{3}\\ Y_{3}\\ Z_{3} \end{array}\right),

so that the \textstyle\hat{Z}_{3} versor \textstyle (X_{3}=0,Y_{3}=0,Z_{3}=1)^{T}\, is mapped to the point \textstyle (X_{4}=-\sin\delta,Y_{4}=0,Z_{4}=\cos\delta)^{T}\,.

Constant translation

We now choose another coordinate basis whose origin is located at the barycenter of the gyroscope. This can be performed by the following translation along the zenith axis

\left(\begin{array}{c} X_{5}\\ Y_{5}\\ Z_{5} \end{array}\right)=\left(\begin{array}{c} X_{4}\\ Y_{4}\\ Z_{4} \end{array}\right)-\left(\begin{array}{c} 0\\ 0\\ R \end{array}\right)\,,

so that the origin of the new system, (X_{5}=0,Y_{5}=0,Z_{5}=0)^{T} is located at the point (X_{4}=0,Y_{4}=0,Z_{4}=R)^{T}, and R is the radius of the Earth. Now the X_{5}-axis points towards the south direction.

Fourth time-dependent rotation

Now we rotate about the zenith Z_{5}-axis so that the new coordinate system is attached to the structure of the gyroscope, so that for an observer at rest in this coordinate system, the gyrocompass is only rotating about its own axis of symmetry. In this case we find

\left(\begin{array}{c} X_{6}\\ Y_{6}\\ Z_{6} \end{array}\right)=\left(\begin{array}{ccc} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} X_{5}\\ Y_{5}\\ Z_{5} \end{array}\right).

The axis of symmetry of the gyrocompass is now along the X_{6}-axis.

Last time-dependent rotation

The last rotation is a rotation on the axis of symmetry of the gyroscope as in

\left(\begin{array}{c} X_{7}\\ Y_{7}\\ Z_{7} \end{array}\right)=\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos\psi & \sin\psi\\ 0 & -\sin\psi & \cos\psi \end{array}\right)\left(\begin{array}{c} X_{6}\\ Y_{6}\\ Z_{6} \end{array}\right).

Dynamics of the system

Since the gyroscope is not moving the height of its barycenter (and the origin of the coordinate system is located at this same point), its gravitational potential energy is constant. Therefore its Lagrangian \mathcal{L} corresponds to its kinetic energy K only. We have


where the tensor of inertia is given by

I=\left(\begin{array}{ccc} I_{1}&0&0\\ 0 & I_{2}&0\\ 0 &0 & I_{2} \end{array}\right)\,,


\begin{align} \vec{\omega}&=\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos\psi & \sin\psi\\ 0 & -\sin\psi & \cos\psi \end{array}\right)\left(\begin{array}{c} \dot{\psi}\\ 0\\ 0 \end{array}\right)+\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos\psi & \sin\psi\\ 0 & -\sin\psi & \cos\psi \end{array}\right)\left(\begin{array}{ccc} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} 0\\ 0\\ \dot{\alpha} \end{array}\right)\\ &{}+\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos\psi & \sin\psi\\ 0 & -\sin\psi & \cos\psi \end{array}\right)\left(\begin{array}{ccc} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{ccc} \cos\delta & 0 & -\sin\delta\\ 0 & 1 & 0\\ \sin\delta & 0 & \cos\delta \end{array}\right)\left(\begin{array}{ccc} \cos\Phi & \sin\Phi & 0\\ -\sin\Phi & \cos\Phi & 0\\ 0 & 0 & 1 \end{array}\right)\\ &{}\times\left(\begin{array}{ccc} \cos\Omega t & \sin\Omega t & 0\\ -\sin\Omega t & \cos\Omega t & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} 0\\ 0\\ \Omega \end{array}\right)\\ &= \left(\begin{array}{c} \dot{\psi}\\ 0\\ 0\\ \end{array}\right)+\left(\begin{array}{c} 0\\ \dot{\alpha}\sin\psi\\ \dot{\alpha}\cos\psi \end{array}\right)+\left(\begin{array}{c} -\Omega\sin\delta\cos\alpha\\ \Omega(\sin\delta\sin\alpha\cos\psi+\cos\delta\sin\psi)\\ \Omega(-\sin\delta\sin\alpha\sin\psi+\cos\delta\cos\psi) \end{array}\right).\end{align}

Therefore we find

\begin{align} \mathcal{L}&=\frac{1}{2}\,[I_{1}\omega_{1}^{2}+I_{2}(\omega_{2}^{2}+\omega_{3}^{2})]\\ &= \frac{1}{2}\, I_{1}(\dot{\psi}-\Omega\sin\delta\cos\alpha)^{2} {}+\frac{1}{2}\, I_{2}\{\partial\dot{\psi}}=I_{1}(\dot{\psi}-\Omega\sin\delta\cos\alpha)=\mathrm{constant}.

Since the angular momentum \vec L of the gyrocompass is given by \vec L=I\vec\omega, we see that the constant L_x, is the component of the angular momentum about the axis of symmetry. Furthermore, we find the equation of motion for the variable \alpha as

\frac{d}{dt}\!\left(\frac{\partial \mathcal{L}_{1}}{\partial\dot{\alpha}}\right)=\frac{\partial \mathcal{L}_{1}}{\partial\alpha}\,,


\begin{align} I_{2}\ddot{\alpha} &=I_{1}\Omega(\dot{\psi}-\Omega\sin\delta\cos\alpha)\sin\delta\sin\alpha+\frac{1}{2}\, I_{2}\,\Omega^{2}\sin^{2}\delta\sin2\alpha\\ &=L_{x}\Omega\sin\delta\sin\alpha+\frac{1}{2}\, I_{2}\,\Omega^{2}\sin^{2}\delta\sin2\alpha\,.\end{align}

Particular case: the poles

At the poles we find \sin\delta=0, and the equations of motion become

\begin{align} L_{x} &=I_{1}\dot{\psi}=\mathrm{constant}\\ I_{2}\ddot{\alpha}&=0\,.\end{align}

This simple solution implies that the gyroscope is uniformly rotating with constant angular velocity in both the vertical and symmetrical axis.

The general and physically relevant case

Let us suppose, now that \sin\delta\neq0, and that \alpha\approx0, that is the axis of the gyroscope is approximately along the North-South line, and let us find the parameter space (if it exists), for which the system admits stable small oscillations about this same line. If this situation occurs, the gyroscope will be always approximately aligned along the North-South line, giving direction. In this case we find

\begin{align} L_{x}&\approx I_{1}(\dot{\psi}-\Omega\sin\delta)\,,\\ I_{2}\ddot{\alpha}&\approx (L_{x}\Omega\sin\delta+I_{2}\,\Omega^{2}\sin^{2}\delta)\,\alpha\,.\end{align}

Let us consider the case that


and, further, we allow for fast gyro-rotations, that is


Therefore, for fast spinning rotations, L_x<0 implies \dot\psi<0. In this case, the equations of motion further simplify to

\begin{align} L_{x}&\approx -I_{1}|\dot{\psi}|\approx\mathrm{constant}\,,\\ I_{2}\ddot{\alpha}&\approx -I_{1}|\dot{\psi}|\Omega\sin\delta\,\alpha\,.\end{align}

Therefore we find small oscillations about the North-South line, as \alpha\approx A\sin(\tilde\omega t+B), where the angular velocity of this harmonic motion of the axis of symmetry of the gyrocompass about the North-South line is given by


which corresponds to a period for the oscillations given by


Therefore \tilde\omega is proportional to the geometric mean of the Earth and spinning angular velocities. In order to have small oscillations we have required \dot{\psi}<0, so that the North is located along the right-hand-rule direction of the spinning axis, that is along the negative direction of the X_7-axis, the axis of symmetry. As a side result, on measuring T (and knowing \dot{\psi}), one can deduce the local colatitude \delta.


The first, not yet practical,[6] form of gyrocompass was patented in 1885 by Marinus Gerardus van den Bos.[6] Usable gyrocompass was invented in 1906 in Germany by Hermann Anschütz-Kaempfe, and after successful tests in 1908 became widely used in German Imperial Navy.[1][6][7]

The gyrocompass was an important invention for nautical navigation because it allowed accurate determination of a vessel’s location at all times regardless of the vessel’s motion, the weather and the amount of steel used in the construction of the ship.[3] In the United States, Elmer Ambrose Sperry produced a workable gyrocompass system (1908: patent #1,242,065), and founded the Sperry Gyroscope Company. The unit was adopted by the U.S. Navy (1911[2]), and played a major role in World War I. The Navy also began using Sperry's "Metal Mike": the first gyroscope-guided autopilot steering system. In the following decades, these and other Sperry devices were adopted by steamships such as the RMS Queen Mary, airplanes, and the warships of World War II. After his death in 1930, the Navy named the USS Sperry after him.

Meanwhile, in 1913, C. Plath (a Hamburg, Germany-based manufacturer of navigational equipment including sextants and magnetic compasses) developed the first gyrocompass to be installed on a commercial vessel. C. Plath sold many gyrocompasses to the Weems’ School for Navigation in Annapolis, MD, and soon the founders of each organization formed an alliance and became Weems & Plath.[8]

The 1889 Dumoulin-Krebs gyroscope

Before the success of gyrocompass, several attempts had been made in Europe to use gyroscope instead. By 1880, William Thomson (lord Kelvin) tried to propose a gyrostat (tope) to the British Navy. In 1889, Arthur Krebs adapted an electric motor to the Dumoulin-Froment marine gyroscope, for the French Navy. Giving the Gymnote submarine the ability to keep a straight line under water during several hours, it allowed her to force a naval block in 1890.


A gyrocompass is subject to certain errors. These include streaming error, where rapid changes in course, speed and latitude cause deviation before the gyro can adjust itself.[9] On most modern ships the GPS or other navigational aids feed data to the gyrocompass allowing a small computer to apply a correction. Alternatively a design based on an orthogonal triad of fibre optic gyroscope or ring laser gyroscopes will eliminate these errors, as they depend upon no mechanical parts, instead using the principles of optical path difference to determine rate of rotation.[10]


  • U.S. Patent 1,279,471 : "Gyroscopic compass" by E. A. Sperry, filed June, 1911; issued September, 1918

See also


  1. ^ Although the effect is not visible in a specific case when the gyroscope's axis is precisely parallel to the Earth's rotational axis.


  1. ^ a b c d The Anschutz Gyro-Compass and Gyroscope Engineering. pp. 7–24. 
  2. ^ a b c d e f "The gyroscope pilots ships & planes". Life: 80–83. Mar 15, 1943. 
  3. ^ a b Gyrocompass, Auxiliary Gyrocompass, and Dead Reckoning Analyzing Indicator and Tracer Systems, San Francisco Maritime National Park Association.
  4. ^ NASA NASA Callback: Heading for Trouble, NASA Callback Safety Bulletin website, December 2005, No. 305. Retrieved August 29, 2010.
  5. ^ Bowditch, Nathaniel. American Practical Navigator, Paradise Cay Publications, 2002, pp.93-94, ISBN 978-0-939837-54-0.
  6. ^ a b c Galison, Peter (1987). How experiments end. pp. 34–37.  
  7. ^ Standard 22 Anschütz Gyro Compass [sic] System: Gyro Compass [sic] Technology [sic] for over than [sic] 100 years
  8. ^ The Invention of Precision Navigational Instruments for Air and Sea Navigation, Weems & Plath.
  9. ^ Gyrocompass: Steaming Error, Navis. Accessed 15 December 2008.
  10. ^ Seamanship Techniques:Shipboard and Marine Operations, D. J. House, Butterworth-Heinemann, 2004, p. 341


  • Trainer, Matthew (2008). "Albert Einstein's expert opinions on the Sperry vs. Anschütz gyrocompass patent dispute". World Patent Information 30 (4): 320.  

External links

  • Elmer A. Sperry case file at the Franklin Institute contains records concerning his 1914 Franklin Award for the gyroscopic compass
  • "A Job Thought Impossible", the story of Chrysler Corporation's mass-production of previously hand-made gyrocompasses for World War II naval requirements.
  • Errors of the Gyrocompass
  • Using the Gyrocompass
  • Ring Laser Gyrocompass manufactured by Sonardyne
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.