World Library  
Flag as Inappropriate
Email this Article

Internal structure of the Moon

Article Id: WHEBN0008955397
Reproduction Date:

Title: Internal structure of the Moon  
Author: World Heritage Encyclopedia
Language: English
Subject: Moon, Yutu (rover), Magnetic field of the Moon, Chang'e 3, Crater of eternal darkness
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Internal structure of the Moon

Moon's internal structure
Olivine basalt collected by Apollo 15.

Having a mean density of 3,346.4 kg/m³,[1] the Moon is a differentiated body, being composed of a geochemically distinct crust, mantle, and core. This structure is believed to have resulted from the fractional crystallization of a magma ocean shortly after its formation about 4.5 billion years ago. The energy required to melt the outer portion of the Moon is commonly attributed to a giant impact event that is postulated to have formed the Earth-Moon system, and the subsequent reaccretion of material in Earth orbit. Crystallization of this magma ocean would have given rise to a mafic mantle and a plagioclase-rich crust.

Geochemical mapping from orbit implies that the crust of the Moon is largely anorthositic in composition,[2] consistent with the magma ocean hypothesis. In terms of elements, the lunar crust is composed primarily of oxygen, silicon, magnesium, iron, calcium, and aluminium, but important minor and trace elements such as titanium, uranium, thorium, potassium, and hydrogen are present as well. Based on geophysical techniques, the crust is estimated to be on average about 50 km thick.[3]

Partial melting within the mantle of the Moon gave rise to the eruption of mare basalts on the lunar surface. Analyses of these basalts indicate that the mantle is composed predominantly of the minerals olivine, orthopyroxene and clinopyroxene, and that the lunar mantle is more iron rich than that of the Earth. Some lunar basalts contain high abundances of titanium (present in the mineral ilmenite), suggesting that the mantle is highly heterogeneous in composition. Moonquakes have been found to occur deep within the mantle of the Moon about 1,000 km below the surface. These occur with monthly periodicities and are related to tidal stresses caused by the eccentric orbit of the Moon about the Earth. A few shallow moonquakes with hypocenters located about 100 km below the surface have also been detected, but these occur more infrequently and appear to be unrelated to the lunar tides.[3]

Core

Schematic illustration of the internal structure of the Moon

Several lines of evidence imply that the lunar core is small, with a radius of about 350 km or less.[3] The size of the lunar core is only about 20% the size of the Moon itself, in contrast to about 50% as is the case for most other terrestrial bodies. The composition of the lunar core is not well constrained, but most believe that it is composed of metallic iron alloyed with a small amount of sulfur and nickel. Analyses of the Moon's time-variable rotation indicate that the core is at least partly molten.[4]

In 2010 reanalysis of the old Apollo seismic data on the deep moonquakes using modern processing methods confirmed that the Moon has an iron rich core with the radius of 330 ± 20 km. The same reanalysis established that the solid inner core made of pure iron has the radius of 240 ± 10 km. The core is surrounded by the partially (10 to 30%) melted layer of the lower mantle with the radius of 480 ± 20 km (thickness ~150 km). These results imply that 40% of the core by volume has solidified. The density of the liquid outer core is about 5 g/cm3 and it can contain as much 6% sulfur by weight. The temperature in the core is probably about 1600–1700 K.[5]
Moon – Oceanus Procellarum ("Ocean of Storms")

Ancient rift valleys – rectangular structure (visible – topography – GRAIL gravity gradients) (October 1, 2014).

Ancient rift valleys – context.

Ancient rift valleys – closeup (artist's concept).

See also

References

  1. ^ Making it the second densest satellite in the Solar System after Io
  2. ^ P. Lucey and 12 coauthors, P. (2006). "Understanding the lunar surface and space-Moon interactions". Reviews in Mineralogy and Geochemistry 60: 83–219.  
  3. ^ a b c Mark Wieczorek and 15 coauthors, M. A. (2006). "The constitution and structure of the lunar interior". Reviews in Mineralogy and Geochemistry 60: 221–364.  
  4. ^ J. G. Williams, S. G. Turyshev, D. H. Boggs, J. T. Ratcliff (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research 37 (1): 67–71.  
  5. ^ Weber, R. C.; Lin, P.-Y.; Garnero, E. J.; Williams, Q.; Lognonne, P. (2011). "Seismic Detection of the Lunar Core". Science 331 (6015): 309–312.  

External links

  • Moon articles in Planetary Science Research Discoveries, including articles about internal structure of the Moon
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.