World Library  
Flag as Inappropriate
Email this Article

Key exchange

Article Id: WHEBN0000578092
Reproduction Date:

Title: Key exchange  
Author: World Heritage Encyclopedia
Language: English
Subject: Diffie–Hellman key exchange, Public-key cryptography, Key (cryptography), Blom's scheme, Firefly (key exchange protocol)
Collection: Cryptographic Primitives, Cryptographic Protocols
Publisher: World Heritage Encyclopedia

Key exchange

Key exchange (also known as "key establishment") is any method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm.

If sender and receiver wish to exchange encrypted messages, each must be equipped to encrypt messages to be sent and decrypt messages received. The nature of the equipping they require depends on the encryption technique they might use. If they use a code, both will require a copy of the same codebook. If they use a cipher, they will need appropriate keys. If the cipher is a symmetric key cipher, both will need a copy of the same key. If an asymmetric key cipher with the public/private key property, both will need the other's public key.


  • The key exchange problem 1
    • Identification 1.1
    • Diffie–Hellman key exchange 1.2
    • Public key infrastructure 1.3
    • Web of trust 1.4
    • Password-authenticated key agreement 1.5
    • Quantum key exchange 1.6
  • The future 2
  • See also 3
  • References 4

The key exchange problem

The key exchange problem is how to exchange whatever keys or other information are needed so that no one else can obtain a copy. Historically, this required trusted couriers, diplomatic bags, or some other secure channel. With the advent of public key / private key cipher algorithms, the encrypting key (aka public key) could be made public, since (at least for high quality algorithms) no one without the decrypting key (aka, the private key) could decrypt the message.


In principle, the only remaining problem was to be sure (or at least confident) that a public key actually belonged to its supposed owner. Because it is possible to 'spoof' another's identity in any of several ways, this is not a trivial or easily solved problem, particularly when the two users involved have never met and know nothing about each other.

Diffie–Hellman key exchange

In 1975, published a cryptographic protocol called the Diffie–Hellman key exchange (D–H) based on concepts developed by Hellman's PhD student Ralph Merkle. The protocol enables users to securely exchange secret keys even if an opponent is monitoring that communication channel. The D–H key exchange protocol, however, does not by itself address authentication (i.e. the problem of being sure of the actual identity of the person or 'entity' at the other end of the communication channel). Authentication is crucial when an opponent can both monitor and alter messages within the communication channel (aka man-in-the-middle or MITM attacks) and was addressed in the fourth section of the 1976 paper.[1]

Public key infrastructure

Public key infrastructures (PKIs) have been proposed as a way around this problem of identity authentication. In their most usual implementation, each user applies to a 'certificate authority' for a digital certificate which serves for other users as a non-tamperable authentication of identity, at the risk of compromising every user in case the CA itself is compromised.

Several countries and other jurisdictions have passed legislation or issued regulations encouraging PKIs by giving (more or less) legal effect to these digital certificates. Several commercial firms, and a few government departments, have established such certificate authorities. VeriSign is the most prominent commercial firm.

This does nothing to solve the problem though, as the trustworthiness of the CA itself is still not guaranteed from an individual’s standpoint. It is a form of argument from authority fallacy. For actual trustworthiness, personal verification that the certificate belongs to the CA and establishment of trust in the CA are required. This is usually not possible.

For those new to such things, these arrangements are best thought of as electronic notary endorsements that “this public key belongs to this user”. As with notary endorsements, there can be mistakes or misunderstandings in such vouchings. Additionally, the notary itself can be untrusted. There have been several high profile public failures by assorted certificate authorities.

Web of trust

At the other end of the conceptual range is the web of trust system, which avoids central Certificate Authorities entirely. Each user is responsible for getting any certificate from another before using that certificate to communicate with, vet digital signatures from, ... the user claimed to be associated with the particular public key in a certificate. PGP (and GPG, an implementation of the OpenPGP Internet Standard) employ just such a web of trust mechanism. Together they are the most widely used high quality crypto system in the world.

Password-authenticated key agreement

Password-authenticated key agreement algorithms can perform a cryptographic key exchange utilizing knowledge of a user's password.

Quantum key exchange

The BB84 key exchange protocol—like any quantum key exchange protocol—exploits certain properties of quantum physics to ensure its security. Since quantum mechanics ensures physical traces as a result of mere observation, it provides protection against man-in-the-middle attacks that cannot, as a matter of physical principle, be circumvented.

The future

The problem of key exchange has not yet been solved. In particular, it has not yet been solved for the modern situation of two previously unknown users attempting to communicate electronically, as, for instance, in electronic commerce. Some of the existing work-around designs work, more or less, but are not fully satisfactory.

See also


  1. ^ Diffie, Whitfield; Hellman, Martin E. (November 1976). "New Directions in Cryptography" (PDF). IEEE Transactions On Information Theory. IT-22 (6): 644–654. 
  • The possibility of Non-Secret digital encryption J. H. Ellis, January 1970.
  • Non-Secret Encryption Using a Finite Field MJ Williamson, January 21, 1974.
  • Thoughts on Cheaper Non-Secret Encryption MJ Williamson, August 10, 1976.
  • New Directions in Cryptography W. Diffie and M. E. Hellman, IEEE Transactions on Information Theory, vol. IT-22, Nov. 1976, pp: 644–654.
  • Cryptographic apparatus and method Martin E. Hellman, Bailey W. Diffie, and Ralph C. Merkle, U.S. Patent #4,200,770, 29 April 1980
  • The First Ten Years of Public-Key Cryptography Whitfield Diffie, Proceedings of the IEEE, vol. 76, no. 5, May 1988, pp: 560–577 (1.9MB PDF file)
  • Menezes, Alfred; van Oorschot, Paul; Vanstone, Scott (1997). Handbook of Applied Cryptography Boca Raton, Florida: CRC Press. ISBN 0-8493-8523-7. (Available online)
  • Singh, Simon (1999) The Code Book: the evolution of secrecy from Mary Queen of Scots to quantum cryptography New York: Doubleday ISBN 0-385-49531-5
  • An Overview of Public Key Cryptography Martin E. Hellman, IEEE Communications Magazine, May 2002, pp:42–49. (123kB PDF file)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.