World Library  
Flag as Inappropriate
Email this Article

Kynurenic acid

Article Id: WHEBN0006524412
Reproduction Date:

Title: Kynurenic acid  
Author: World Heritage Encyclopedia
Language: English
Subject: 7-Chlorokynurenic acid, N-Acetylaspartic acid, Halothane, DNQX, DCPG
Collection: Ampa Receptor Antagonists, Aromatic Acids, Hydroxy Acids, Kainate Receptor Antagonists, Nmda Receptor Antagonists, Phenols, Quinolines
Publisher: World Heritage Encyclopedia

Kynurenic acid

Kynurenic acid
Chemical structure of kynurenic acid
CAS number  YesY
ChemSpider  YesY
Jmol-3D images Image 1
Molecular formula C10H7NO3
Molar mass 189.168 g/mol
Melting point 282.5 °C (540.5 °F; 555.7 K)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY   YesY/N?)

Kynurenic acid (KYNA or KYN) is a product of the normal metabolism of amino acid L-tryptophan. It has been shown that kynurenic acid possesses neuroactive activity. It acts as an antiexcitotoxic and anticonvulsant, most likely through acting as an antagonist at excitatory amino acid receptors. Because of this activity, it may influence important neurophysiological and neuropathological processes. As a result, kynurenic acid has been considered for use in therapy in certain neurobiological disorders. Conversely, increased levels of kynurenic acid have also been linked to certain pathological conditions.

Kynurenic acid was discovered in 1853 by the German chemist Justus von Liebig in dog urine, which it was apparently named after.[1]

It is formed from L-kynurenine in a reaction catalyzed by the enzyme kynurenine—oxoglutarate transaminase.


  • Mechanism of action 1
  • Role in disease 2
  • Link to ketogenic diet 3
  • See also 4
  • References 5
  • External links 6

Mechanism of action

KYNA has been proposed to act on four targets:

  • As an antagonist at ionotropic AMPA, NMDA and Kainate glutamate receptors in the concentration range of 0.1-2.5 mM[2]
  • As a noncompetitive antagonist at the glycine site of the NMDA receptor.
  • As an antagonist of the α7 nicotinic acetylcholine receptor.[3] However, recently (2011) direct recording of α7 nicotinic acetylcholine receptor currents in adult (noncultured) hippocampal interneurons by the Cooper laboratory [4] validated a 2009 study [5] that failed to find any blocking effect of kynurenic acid across a wide range of concentrations, thus suggesting that in noncultured, intact preparations from adult animals there is no effect of kynurenic acid on α7 nicotinic acetylcholine receptor currents [4][5]
  • As a ligand for the orphan G protein-coupled receptor GPR35.[6] Another tryptophan metabolite, 5-hydroxyindoleacetic acid exerts its effects via the orphan G protein-coupled receptor GPR35 [7]

Role in disease

High levels of kynurenic acid have been identified in patients suffering from tick-borne encephalitis,[8] schizophrenia and HIV-related illnesses. In all these situations increased levels were associated with confusion and psychotic symptoms. Kynurenic acid acts in the brain as a glycine-site NMDAr antagonist, key in glutamatergic neurotransmission system, which is thought to be involved in the pathophysiology and pathogenesis of schizophrenia.

A kynurenic acid hypothesis of schizophrenia has been proposed in 2007,[9][10] based on its action on midbrain dopamine activity and NMDArs, thus linking dopamine hypothesis of schizophrenia with the glutamate hypothesis of the disease.

High levels of kynurenic acid have been identified in human urine in certain metabolic disorders, such as marked pyridoxine deficiency and deficiency/absence of kynureninase.

When researchers decreased the levels of kynurenic acid in the brains of mice, the cognition was shown to improve markedly.[11]

Kynurenic acid shows neuroprotective properties. [12] Some researchers have posited that the increased levels found in cases of neurological degradation is due to a failed attempt to protect the cells. [13]

Link to ketogenic diet

One controlled study kept mice on a ketogenic diet and measured kyurenic acid concentrations in different parts of the brain.[14] It found that the mice on the ketogenic diet had greater kynurenic acid concentrations in the striatum and hippocampus compared to mice on a normal diet, with no significant difference in the cortex.

In response to the studies showing detrimental behaviour following increases in kynurenic acid[15] the authors also note that the diet was generally well tolerated by the animals, with no "gross behavioural abnormalities". They posit that the increases in concentrations found were insufficient to produce behavioural changes seen in those studies.

See also


  1. ^ Liebig, J., Uber Kynurensäure, Justus Liebigs Ann. Chem., 86: 125-126, 1853.
  2. ^ Elmslie KS, Yoshikami D. (1985) Effects of kynurenate on root potentials evoked by synaptic activity and amino acids in the frog spinal cord. Brain Res. Mar 25;330(2):265-72.
  3. ^ Hilmas, C.; Pereira, EFR; Alkondon, M.; Rassoulpour, A.; Schwarcz, R.; Albuquerque, E.X. (2001). "The Brain Metabolite Kynurenic Acid Inhibits α7 Nicotinic Receptor Activity and Increases Non-α7 Nicotinic Receptor Expression: Physiopathological Implications". J. Neurosci 21 (19): 7463–7473. 
  4. ^ a b Dobelis P., Varnell A., and Donald C. Cooper. "Nicotinic α7 acetylcholine receptor-mediated currents are not modulated by the tryptophan metabolite kynurenic acid in adult hippocampal interneurons. (2011) Nature Precedings doi:10.1038/npre.2011.6277.1
  5. ^ a b Mok, MH; Fricker, AC; Weil, A; Kew, JN (2009). "Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels". Neuropharmacology 57: 242–249.  
  6. ^ Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006). "Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35". J. Biol. Chem. 281 (31): 22021–8.  
  7. ^ Grilli M, Raiteri L, Patti L, Parodi M, Robino F, Raiteri M, Marchi M (2006). "Modulation of the function of presynaptic α7 and non-α7 nicotinic receptors by the tryptophan metabolites, 5-hydroxyindole and kynurenate in mouse brain". Br. J. Pharmacol. 149 (6): 724–32.  
  8. ^ Holtze M, Mickiené A, Atlas A, Lindquist L, Schwieler L (2012). "Elevated cerebrospinal fluid kynurenic acid levels in patients with tick-borne encephalitis". J. Intern. Med. 272 (4): 394–401.  
  9. ^ Erhardt S, Schwieler L, Nilsson L, Linderholm K, Engberg G (2007). "The kynurenic acid hypothesis of schizophrenia". Physiol Behav. 92 (1): 203–209.  
  10. ^ Erhardt S, Schwieler L, Engberg G (2003). "Kynurenic acid and schizophrenia". Adv. Exp. Med. Biol. 527: 155–65.  
  11. ^ Robert Schwarcz; Elmer, Greg I; Bergeron, Richard; Albuquerque, Edson X; Guidetti, Paolo; Wu, Hui-Qiu; Schwarcz, Robert (2010). "Reduction of Endogenous Kynurenic Acid Formation Enhances Extracellular Glutamate, Hippocampal Plasticity, and Cognitive Behavior". Neuropsychopharmacology 35 (8): 1734–1742.  
  12. ^ Urbańska, Ewa M.; Chmiel-Perzyńska, Iwona; Perzyński, Adam; Derkacz, Marek; Owe-Larsson, Björn (2014). "Endogenous Kynurenic Acid and Neurotoxicity". pp. 421–453.  
  13. ^ Zádori, D.; Klivényi, P.; Vámos, E.; Fülöp, F.; Toldi, J.; Vécsei, L. (2009). "Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies". Journal of Neural Transmission 116 (11): 1403–1409.  
  14. ^ Żarnowski, Tomasz; Chorągiewicz, Tomasz; Tulidowicz-Bielak, Maria; Thaler, Sebastian; Rejdak, Robert; Żarnowska, Iwona; Turski, Waldemar Andrzej; Gasior, Maciej (2011). "Ketogenic diet increases concentrations of kynurenic acid in discrete brain structures of young and adult rats". Journal of Neural Transmission 119 (6): 679–684.  
  15. ^ Potter, Michelle C; Elmer, Greg I; Bergeron, Richard; Albuquerque, Edson X; Guidetti, Paolo; Wu, Hui-Qiu; Schwarcz, Robert (2010). "Reduction of Endogenous Kynurenic Acid Formation Enhances Extracellular Glutamate, Hippocampal Plasticity, and Cognitive Behavior". Neuropsychopharmacology 35 (8).  

External links

  • Link found between TBE and schizophrenia -, Sweden's news in English, 6 November 2007.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.