World Library  
Flag as Inappropriate
Email this Article

Leading edge

Article Id: WHEBN0040166449
Reproduction Date:

Title: Leading edge  
Author: World Heritage Encyclopedia
Language: English
Subject: Leading-edge slats, Krueger flap, Akaflieg Darmstadt D-9 Konsul, Bonomi BS.7 Allievo Italia, Spar (aeronautics)
Publisher: World Heritage Encyclopedia

Leading edge

Cross section of an aerodynamic surface with the leading edge emphasised
American Aviation AA-1 Yankee showing the wing's straight leading edge

The leading edge is the part of the wing that first contacts the air;[1] alternatively it is the foremost edge of an airfoil section.[2] The first is an aerodynamic definition, the second a structural one. As an example of the distinction, during a tailslide, from an aerodynamic point of view, the trailing edge becomes the leading edge and vice versa but from a structural point of view the leading edge remains unchanged.

The structural leading edge may be equipped with one or more of the following:

Associated terms are leading edge radius and leading edge stagnation point.[2]

Seen in plan the leading edge may be straight or curved. A straight leading edge may be swept or unswept, the latter meaning that it is perpendicular to the longitudinal axis of the aircraft. As wing sweep is conventionally measured at the 25% chord line[2] an unswept wing may have a swept or tapered leading edge. Some aircraft, like the General Dynamics F-111, have swing-wings where the sweep of both wing and leading edge can be varied.

In high-speed aircraft, compression heating of the air ahead of the wings can cause extreme heating of the leading edge. Heating was a major contributor to the destruction of the Space Shuttle Columbia during re-entry on February 1, 2003.

Sail boats

When sailing into the wind, the dynamics that propel a sailboat forward are the same that create lift for an airplane. The term leading edge refers to the part of the sail that first contacts the wind. A fine tapered leading edge that doesn't disturb the flow is desirable since 90% of the drag on a sailboat owing to sails is a result of vortex shedding from the edges of the sail.[3] Sailboats utilize a mast to support the sail. To help reduce the drag and poor net sail performance, designers have experimented with masts that are more aerodynamically shaped, rotating masts, wing masts, or placed the mast behind the sails as in the mast aft rig.


  1. ^ Crane, Dale: Dictionary of Aeronautical Terms, third edition, page 305. Aviation Supplies & Academics, 1997. ISBN 1-56027-287-2
  2. ^ a b c
  3. ^

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.