World Library  
Flag as Inappropriate
Email this Article

Light-gated ion channel

Article Id: WHEBN0011144474
Reproduction Date:

Title: Light-gated ion channel  
Author: World Heritage Encyclopedia
Language: English
Subject: Chlamydomonas reinhardtii
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Light-gated ion channel

Light-gated ion channels are a group of transmembrane proteins that form ion channels; pores which open or close in response to light. Most light-gated ion channels have been synthesized in the laboratory for study, though one naturally occurring example, Channelrhodopsin, is currently known.[1] Photoreceptor proteins, which act in a similar manner to light-gated ion channels are generally G protein-coupled receptors and not actually gated ion channels.

Synthetic Purpose

Other types of gated ion channels, ligand-gated and voltage-gated, have been synthesized with a light-gated component in an attempt to better understand their nature and properties. By the addition of a light-gated section, the kinetics and mechanisms of operation can be studied in depth. For example, the addition of a light-gated component allows for the introduction of many highly similar ligands to be introduced to the binding site of a ligand-gated ion channel to assist in the determination of the mechanism.

In 1980, the first ion channel to be adapted for study with a light-gated mechanism was the nicotinic acetylcholine receptor.[2] This receptor was well-known at the time, and so was aptly suited to adaptation, and allowed for a study of the kinetics as not allowed before.

Mechanism

Light-gated ion channels function in a similar manner to other gated ion channels. When exposed to a certain stimulus, a conformational change occurs in the transmembrane proteins, which constitute the pore. This conformational change then opens or closes the ion channel, allowing for the flow of ions according to their electrochemical gradient. In the specific case of light-gated ion channels, the transmembrane proteins are usually coupled with a molecule that acts as a photoswitch. Retinal is a good example of a molecular photoswitch and is found in the naturally occurring Channelrhodopsins. The photoswitch absorbs a specific photon and changes its conformation, which, in turn, changes the conformation of the transmembrane proteins opening or closing the pore through which ions flow.

Examples

Examples of light-gated ion channels occur in both natural and synthetic environments. These include:

Naturally Occurring

Synthetically Adapted

  • nicotinic acetylcholine receptor was the first ion channel to be synthetically adapted with a light-gated mechanism.
  • Many other fully synthetic, light-gated channels have produced as well.[3][4]

See also

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.